Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grazioli, Davide

  • Google
  • 3
  • 5
  • 82

University of Padua

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Predicting mechanical and electrical failure of nanowire networks in flexible transparent electrodescitations
  • 2019Electrochemical-mechanical modeling of solid polymer electrolytes: Stress development and non-uniform electric current density in trench geometry microbatteries41citations
  • 2019Electrochemical-mechanical modeling of solid polymer electrolytes41citations

Places of action

Chart of shared publication
Nicola, Lucia
1 / 4 shared
Simone, Angelo
3 / 5 shared
Gangi, Gabriele
1 / 1 shared
Brandell, Daniel
2 / 26 shared
Zadin, Vahur
2 / 11 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Nicola, Lucia
  • Simone, Angelo
  • Gangi, Gabriele
  • Brandell, Daniel
  • Zadin, Vahur
OrganizationsLocationPeople

article

Electrochemical-mechanical modeling of solid polymer electrolytes

  • Grazioli, Davide
  • Brandell, Daniel
  • Simone, Angelo
  • Zadin, Vahur
Abstract

We study the effect of mechanical stresses arising in solid polymer electrolytes (SPEs) on the electrochemical performance of lithium-ion (Li-ion) solid-state batteries. Time-dependent finite element analyses of interdigitated plate cells during a discharge process are performed with a constitutive model that couples ionic conduction within the SPE with its deformation field. Due to the coupled nature of the processes taking place in the SPE, the non-uniform ionic concentration profiles that develop during the discharge process induce stresses and deformations within the SPE; at the same time the mechanical loads applied to the cell affect the charge conduction path. Results of a parametric study show that stresses induced by ionic redistribution favor ionic transport and enhance cell conductivity—up to a 15% increase compared to the solution obtained with a purely electrochemical model. We observe that, when the contribution of the mechanical stresses is included in the simulations, the localization of the electric current density at the top of the electrode plates is more pronounced compared to the purely electrochemical model. This suggests that electrode utilization, a limiting factor for the design of three-dimensional battery architectures, depends on the stress field that develops in the SPE. The stress level is indeed significant, and mechanical failure of the polymer might occur during service.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • simulation
  • Lithium
  • current density