Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ayagou, Martien Duvall Deffo

  • Google
  • 8
  • 11
  • 107

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2020Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutions16citations
  • 2019Corrosion and hydrogen permeation of low alloy steel in H2S-containing environments : the effect of test buffer solution chemistrycitations
  • 2019EIS study of iron and steel corrosion in aqueous solutions at various concentrations of dissolved H2S : impact of oxygen contamination.citations
  • 2019Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, Part 2: Impact of H2S Partial Pressure5citations
  • 2018Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutions75citations
  • 2018Corrosion of Pure iron and Hydrogen Permeation in the Presence of H 2 S with O 2 contaminationcitations
  • 2018Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, 1: Tests on Pure Iron at High H2S Concentration11citations
  • 2018Electrochemical study of oxygen impact on corrosion and hydrogen permeation of Armco iron in the presence of H 2 Scitations

Places of action

Chart of shared publication
Sutter, Eliane
7 / 29 shared
Joshi, Gaurav
3 / 8 shared
Tribollet, Bernard
8 / 97 shared
Kittel, Jean
8 / 59 shared
Mendibide, Christophe
7 / 23 shared
Duret-Thual, Claude
7 / 15 shared
Tran, Thi Tuyet Mai
6 / 11 shared
Ferrando, Nicolas
6 / 12 shared
Tran, Mai
2 / 7 shared
Mendibide, C.
1 / 5 shared
Belkhadiri, Khawla
1 / 1 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Sutter, Eliane
  • Joshi, Gaurav
  • Tribollet, Bernard
  • Kittel, Jean
  • Mendibide, Christophe
  • Duret-Thual, Claude
  • Tran, Thi Tuyet Mai
  • Ferrando, Nicolas
  • Tran, Mai
  • Mendibide, C.
  • Belkhadiri, Khawla
OrganizationsLocationPeople

article

Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutions

  • Ferrando, Nicolas
  • Sutter, Eliane
  • Tribollet, Bernard
  • Tran, Mai
  • Kittel, Jean
  • Mendibide, Christophe
  • Ayagou, Martien Duvall Deffo
  • Duret-Thual, Claude
Abstract

Corrosion of iron exposed to H2S saturated solution at pH 4 was studied by electrochemical impedance spectroscopy, weight loss coupons and surface analysis. Hydrogen permeation was also used as indirect means of evaluating the intensity of the proton reduction reaction leading to hydrogen entry into the metal. Since corrosion in this type of test solution results in the rapid build-up of a conductive and highly porous iron sulfide scale, a specific contribution of the film has to be considered. An impedance model was thus proposed. The faradaic anodic impedance consists of a two-step reaction with charge transfer and adsorption – desorption. An additional contribution, associated with the conductive and highly porous iron sulfide film was added in parallel. This contribution, mostly visible in the 2 low frequency domain, presents a 45° tail associated with a porous electrode behavior. This model was well adapted to describe impedance diagrams measured at various exposure times, up to 620 hours. Charge transfer resistance determined from impedance analysis allowed calculating the evolution with time of the corrosion current density. A very good correlation was found between this corrosion current density and the hydrogen permeation current density. As expected in our experimental conditions, a permeation efficiency close to 100 % is demonstrated. Corrosion rate of 490 µm/year was measured by weight-loss specimens, confirming the validity of the impedance analysis, which resulted in a calculated corrosion rate of 530 µm/year.

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • corrosion
  • Hydrogen
  • iron
  • current density