Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kulkarni, Aniruddha P.

  • Google
  • 1
  • 3
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Evaluation of Sc2O3–CeO2–ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels18citations

Places of action

Chart of shared publication
Giddey, Sarbjit
1 / 4 shared
Badwal, Sukhvinder P. S.
1 / 2 shared
Fini, Daniel
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Giddey, Sarbjit
  • Badwal, Sukhvinder P. S.
  • Fini, Daniel
OrganizationsLocationPeople

article

Evaluation of Sc2O3–CeO2–ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels

  • Kulkarni, Aniruddha P.
  • Giddey, Sarbjit
  • Badwal, Sukhvinder P. S.
  • Fini, Daniel
Abstract

<p>Solid oxide fuel cells (SOFCs), as energy conversion devices, can use a variety of gaseous (hydrogen, methane, ammonia, carbon monoxide) and solid carbon fuels derived from coal and biomass. A critical component of SOFCs is the oxygen-ion conducting electrolyte material. Yttria-stabilised zirconia (YSZ) is a state-of-the-art electrolyte material often used in SOFCs; it has excellent stability in both reducing and oxidising atmospheres, good mechanical strength and compatibility with electrodes. However, YSZ electrolyte has low ionic conductivity, which leads to high voltage losses in electrolyte-supported SOFCs. Scandia-stabilised zirconia has much higher conductivity, but the phase assemblage is complex, with many phases having detrimental effect on the conductivity. Additions of a small quantity of dopants, such as ceria, appear to stabilise the cubic structure. In this work, we investigate the electrochemical performance of ceria-stabilised scandia–zirconia electrolyte supported tubular fuel cells using hydrogen fuel, and directly compare its electrochemical performance with YSZ-electrolyte supported cells using Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>2</sub>–Ag composite electrodes for both types of cells. The electrolyte conductivity and phase assemblage of ceria stabilised scandia-zirconia have been investigated. We also analysed the electrochemical performance of a tubular cell using activated charcoal as a fuel, and nitrogen and carbon dioxide as purge gases. Electrochemical impedance spectroscopy was used to investigate rate-limiting processes and other factors affecting the fuel oxidation reaction.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • phase
  • Oxygen
  • Nitrogen
  • strength
  • composite
  • Hydrogen