Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lepkova, Katerina

  • Google
  • 3
  • 4
  • 136

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand32citations
  • 2017Corrosion of carbon steel in the presence of oilfield deposit and thiosulphate-reducing bacteria in CO2 environment53citations
  • 2017Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods51citations

Places of action

Chart of shared publication
Machuca Suarez, Laura Lizeth
3 / 13 shared
Suarez, Erika M.
1 / 2 shared
Petroski, Adrian
1 / 1 shared
Aldrich, Chris
1 / 1 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Machuca Suarez, Laura Lizeth
  • Suarez, Erika M.
  • Petroski, Adrian
  • Aldrich, Chris
OrganizationsLocationPeople

article

Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods

  • Lepkova, Katerina
  • Machuca Suarez, Laura Lizeth
  • Aldrich, Chris
Abstract

y use of recurrence quantification analysis (RQA), twelve features were extracted from the electrochemical noise signals generated by three types of corrosion: uniform, pitting and passivation. Machine learning methods, i.e. linear discriminant analysis (LDA) and random forests (RF), were used to identify the different corrosion types from those features. Both models gave satisfactory performance, but the RF model showed better prediction accuracy of 93% than the LDA model (88%). Furthermore, an estimation of the importance of the variables by use of the RF model suggested the RQA variables laminarity (LAM) and determinism (DET) played the most significant role with regard to identification of corrosion types. In addition, the comparison of noise resistance with the resistance obtained from EIS measurement showed that the noise resistance can be used for monitoring corrosion rate variations not only for uniform corrosion and passivation, but also for pitting.

Topics
  • uniform corrosion
  • electrochemical-induced impedance spectroscopy
  • random
  • machine learning