Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Keersmaecker, Michel De

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Acrylate-based coatings to protect lead substrates6citations

Places of action

Chart of shared publication
Verbeken, Kim
1 / 154 shared
Berg, Otto Van Den
1 / 2 shared
Vandewalle, Stef
1 / 1 shared
Muselle, Thibault René
1 / 1 shared
Hubin, Annick
1 / 56 shared
Adriaens, Annemie
1 / 1 shared
Prez, Filip Du
1 / 4 shared
Hauffman, Tom
1 / 59 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Verbeken, Kim
  • Berg, Otto Van Den
  • Vandewalle, Stef
  • Muselle, Thibault René
  • Hubin, Annick
  • Adriaens, Annemie
  • Prez, Filip Du
  • Hauffman, Tom
OrganizationsLocationPeople

article

Acrylate-based coatings to protect lead substrates

  • Verbeken, Kim
  • Berg, Otto Van Den
  • Vandewalle, Stef
  • Muselle, Thibault René
  • Hubin, Annick
  • Adriaens, Annemie
  • Keersmaecker, Michel De
  • Prez, Filip Du
  • Hauffman, Tom
Abstract

This study investigates the surface protection treatment of hydrophobic acrylate-based polymers with built-in carboxylic acid groups produced using a controlled Reversible Addition Fragmentation chain Transfer (RAFT) polymerization. The synthesized polymers are dissolved in a water-organic solvent mixture and afterwards deposited on lead substrates by immersing them in the solution. The coatings produce a hydrophobic film, which slows down the lead corrosion processes. The protective properties of the coatings are analyzed using non-destructive odd random phase multisine electrochemical impedance spectroscopy (ORP-EIS) in an acetic acid corrosive solution containing tertbutylammonium bromide (TBAB) supporting electrolyte. The impedance data and electron images of the coatings demonstrate that the coating thickness, pore formation, diffusion and electrolyte uptake profile depend on the polymer’s acrylic acid content and the molecular weight. All these parameters have a clear impact on the inhibition of the corrosion process.

Topics
  • pore
  • surface
  • polymer
  • corrosion
  • phase
  • electrochemical-induced impedance spectroscopy
  • random
  • molecular weight
  • carboxylic acid