Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Forsyth, M.

  • Google
  • 8
  • 29
  • 170

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2017Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes33citations
  • 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage95citations
  • 2016Recent developments in environment-friendly corrosion inhibitors for mild steelcitations
  • 2012Electrochemical etching of aluminium alloy in ionic liquidscitations
  • 2011Anodising AA5083 aluminium alloy using ionic liquidscitations
  • 2011Anodic oxidation of AZ31 Mg alloy in ionic liquidcitations
  • 2003Cerium acetylacetonates—new aspects, including the lamellar clathrate [Ce(acac)4]·10H2O42citations
  • 2001The synthesis of high molecular weight polybutene-1 catalyzed by Cp*Ti(OBz)3/MAOcitations

Places of action

Chart of shared publication
Noor, S. A. M.
1 / 1 shared
Macfarlane, Douglas
6 / 33 shared
Ahmad, A.
1 / 7 shared
Zhu, H.
1 / 9 shared
Yahya, M. Z. A.
1 / 2 shared
Mohamed, N. S.
1 / 1 shared
Su, N. C.
1 / 1 shared
Khoon, L. T.
1 / 1 shared
Howlett, Patrick
1 / 13 shared
Hilder, Matthias
1 / 3 shared
Chen, F.
1 / 7 shared
Basile, Andrew
1 / 6 shared
Girard, Gaetan M. A.
1 / 2 shared
Somers, A. E.
1 / 1 shared
Tan, M. Y. J.
1 / 1 shared
Junk, P. C.
1 / 6 shared
Hinton, B. R.
1 / 1 shared
Howlett, P. C.
2 / 2 shared
Huang, P.
2 / 3 shared
Howlett, P.
1 / 1 shared
Latham, J.-A.
1 / 1 shared
Bond, A. M.
1 / 1 shared
Behrsing, T.
1 / 1 shared
Deacon, G. B.
1 / 3 shared
Forsyth, C. M.
1 / 2 shared
Kamble, K. J.
1 / 1 shared
Skelton, Brian
1 / 66 shared
White, Allan
1 / 54 shared
Cheah, K.
1 / 2 shared
Chart of publication period
2017
2016
2012
2011
2003
2001

Co-Authors (by relevance)

  • Noor, S. A. M.
  • Macfarlane, Douglas
  • Ahmad, A.
  • Zhu, H.
  • Yahya, M. Z. A.
  • Mohamed, N. S.
  • Su, N. C.
  • Khoon, L. T.
  • Howlett, Patrick
  • Hilder, Matthias
  • Chen, F.
  • Basile, Andrew
  • Girard, Gaetan M. A.
  • Somers, A. E.
  • Tan, M. Y. J.
  • Junk, P. C.
  • Hinton, B. R.
  • Howlett, P. C.
  • Huang, P.
  • Howlett, P.
  • Latham, J.-A.
  • Bond, A. M.
  • Behrsing, T.
  • Deacon, G. B.
  • Forsyth, C. M.
  • Kamble, K. J.
  • Skelton, Brian
  • White, Allan
  • Cheah, K.
OrganizationsLocationPeople

article

Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage

  • Macfarlane, Douglas
  • Howlett, Patrick
  • Hilder, Matthias
  • Chen, F.
  • Basile, Andrew
  • Forsyth, M.
  • Girard, Gaetan M. A.
Abstract

<p>It has recently been shown, in the case of the bis(fluorosulfonyl)amide (FSI) based ionic liquids, that as the concentration of the alkali metal salt (LiFSI or NaFSI) is increased, the alkali metal cation transference number increases, despite an increase in viscosity and decrease in conductivity. At the same time significant enhancements in electrochemical stability and rate performance of devices are also observed. Here we overview some of the recent findings already in the literature and in addition demonstrate the feasibility of stable, high rate room temperature lithium battery cycling in an electrolyte comprised of 60 mol% LiFSI in a trimethyl, isobutyl phosphonium FSI ionic liquid using a high voltage NMC cathode. We also demonstrate that the high rate cycling of lithium and sodium metal in these phosphonium FSI electrolytes leads to a nanostructured anode deposit and a lowering of the interfacial impedance, suggesting a stable SEI layer formation. Finally, we propose a hypothesis that may explain some of the observations thus made, by which the high alkali ion concentration in these mixed electrolyte systems leads to the effective elimination of the mass transport limitations that are chiefly responsible for the formation of dendrites in traditional electrolytes. This work suggests that a new type of ionic liquid consisting of a mixture of metal cations with organic cations can provide a solution to the instability of the reactive alkali metal anodes and hence enable higher energy density technologies.</p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • reactive
  • Sodium
  • viscosity
  • Lithium
  • interfacial