People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johansson, Ls
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2019Effect of Power Density on the Electrochemical Properties of Undoped Amorphous Carbon (a-C) Thin Filmscitations
- 2019Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose filmscitations
- 2017Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detectioncitations
- 2017Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopaminecitations
- 2017Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viabilitycitations
- 2016Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Filmscitations
- 2004Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-Dcitations
Places of action
Organizations | Location | People |
---|
article
Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films
Abstract
Amorphous carbon (a-C) films with varying oxygen content were deposited by closed-field unbalanced magnetron sputtering with the aim to understand the effect of oxygen on the structural and physical properties of the films and subsequently correlate these changes with electrochemical properties. The a-C films were characterized by transmission electron microscopy, helium-ion microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and time-of-flight elastic recoil detection analysis. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry with several redox systems (Ru(NH3)62+/3+, Fe(CN)64−/3−, dopamine and ascorbic acid). The results indicated that the carbon films are amorphous with an ID/IG ratio near 2.6. The oxygen content of the films seemed to saturate at around 11 at. %, whereas the amount of surface oxygen functional groups increased steadily with increasing oxygen inflow during deposition. O/C ratio increased from 0.09 to 0.19. A significant increase in film resistivity was observed with increasing oxygen content. Lightly oxygenated a-C films showed a low charge transfer resistance (Rct) and reversible electron transfer for Ru(NH3)62+/3+ whereas both Rct and ΔEp increased considerably for heavily oxygenated films. The inner sphere redox systems were significantly affected by the surface oxygen functional groups with dopamine and ascorbic acid showing a linear increase in ΔEp and Epa, respectively, with increasing oxygen content. Fe(CN)64−/3− did not show a clear trend but was still clearly affected by the increase in oxygen content. The double layer capacitance was about 1 μF/cm2 for all the oxygenated a-C films. ; peerReviewed