People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gaddam, Rohit Ranganathan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Sodium ion storage in reduced graphene oxide
Abstract
<p>The performance of few-layered metal-reduced graphene oxide (RGO) as a negative electrode material in sodium-ion battery was investigated. Experimental and simulation results indicated that the as-prepared RGO with a large interlayer spacing and disordered structure enabled significant sodium-ion storage, leading to a high discharge capacity. The strong surface driven interactions between sodium ions and oxygen-containing groups and/or defect sites led to a high rate performance and cycling stability. The RGO anode delivered a discharge capacity of 272 mA h g<sup>−1</sup> at a current density of 50 mA g<sup>−1</sup>, a good cycling stability over 300 cycles and a superior rate capability. The present work provides new insights into optimizing RGOs for high-performance and low-cost sodium-ion batteries.</p>