People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Armand, Michel
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Transport Properties and Local Ions Dynamics in LATP‐Based Hybrid Solid Electrolytescitations
- 2022Interface Stability between Na3Zr2Si2PO12 Solid Electrolyte and Sodium Metal Anode for Quasi-Solid-State Sodium Batterycitations
- 2021Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusioncitations
- 2020Overview on Lithium-Ion Battery 3D-Printing By Means of Material Extrusioncitations
- 2020Poly(Ethylene Oxide)-LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printingcitations
- 2019Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modelingcitations
- 2019Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteriescitations
- 2019Single-ion conducting poly(ethylene oxide carbonate) as solid polymer electrolyte for lithium batteriescitations
- 2018The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performancecitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytescitations
- 2010Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytescitations
- 2009Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel approachcitations
- 2009Modern generation of polymer electrolytes based on lithium conductive imidazole saltscitations
- 2007FLUOROSULPHONATED ELASTOMERS WITH LOW GLASS TRANSITION BASED OF VINYLIDENE FLUORIDE
Places of action
Organizations | Location | People |
---|
article
Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes
Abstract
<p>High-energy density Zinc-air batteries are currently of interest since they could play a key role in emerging large-scale energy storage applications. However, achieving good rechargeability of such metal-air batteries requires significant further research and development effort. Room Temperature Ionic liquids (RTILs) offer a number of ideal thermal and physical properties as potential electrolytes for large-scale energy storage applications and thus, can help increase the practicality of such electrochemical devices. This paper reports the synthesis and application of three novel quaternary alkoxy ammonium bis(trifluoromethylsulfonyl)amide based RTILs, with two or more ether functional groups designed to interact and solubilize zinc ions, in order to aid in the electrochemical reversibility of the metal. The anion is successfully reduced from, and re-oxidized into, the three alkoxy ammonium RTILs suggesting that they are potential candidates as electrolytes for use in zinc-air batteries. Cyclic voltammetry reveals that the presence of water reduces the activation barrier required to deposit zinc and assists stable charge/discharge cycling in an electrolyte consisting of 0.1 M Zn(NTf<sub>2</sub>)<sub>2</sub> in the tri-alkoxy ammonium chain RTIL, [N<sub>2(20201)(20201)(20201)</sub>] [NTf<sub>2</sub>], with 2.5 wt.% H<sub>2</sub>O. Further experiments demonstrate that with such electrolyte a Zn electrode can complete at least 750 cycles at a current density of 0.1 mA/cm<sup>2</sup> at room temperature.</p>