People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhu, Bin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2023Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cellscitations
- 2023Toward next-generation fuel cell materialscitations
- 2023Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCscitations
- 2023Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCscitations
- 2023Highly Active Interfacial Sites in <scp>SFT‐SnO<sub>2</sub></scp> Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentallycitations
- 2022Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cellscitations
- 2022Perovskite Al-SrTiO<sub>3</sub> semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022A-site deficient semiconductor electrolyte Sr1−xCoxFeO3−δ for low-temperature (450-550 °C) solid oxide fuel cellscitations
- 2022Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cellscitations
- 2022Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam supportcitations
- 2021Semiconductor Nb-Doped SrTiO3-δPerovskite Electrolyte for a Ceramic Fuel Cellcitations
- 2021Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cellcitations
- 2021Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performancecitations
- 2021Novel Perovskite Semiconductor Based on Co/Fe-Codoped LBZY (La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3-δ) as an Electrolyte in Ceramic Fuel Cellscitations
- 2021Electrochemical Properties of a Dual-Ion Semiconductor-Ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2-δComposite for a High-Performance Low-Temperature Solid Oxide Fuel Cellcitations
- 2021Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructurecitations
- 2020Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °Ccitations
- 2020Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell : A comprehensive reviewcitations
- 2015Significance enhancement in the conductivity of core shell nanocomposite electrolytes
- 2015Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cellscitations
- 2013A new energy conversion technology based on nano-redox and nano-device processescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells
Abstract
This work reports a new composite BaxCa1-xCoyFe1-yO3-δ (BCCF) cathode material for advanced and low temperature solid oxide fuel cells (SOFCs). The BCCF-based composite material was synthesized by sol gel method and investigated as a catalytic cathode for low temperature (LT) SOFCs. XRD analysis of the as-prepared material revealed the dominating BCCF perovskite structure as the main phase accompanied with cobalt and calcium oxides as the secondary phases resulting into an overall composite structure. Structure and morphology of the sample was observed by Field Emission Scanning Electron Microscope (FE-SEM). In particular, the Ba0.3Ca0.7Co0.8Fe0.2O3-δ (BCCF37) showed a maximum conductivity of 143 S cm−1 in air at 550 °C measured by DC 4 probe method. The BCCF at the optimized composition exhibited much higher electrical conductivities than the commercial Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite cathode material. A maximum power density of 325 mW cm−2 at 550 °C is achieved for the ceria-carbonate electrolyte fuel cell with BCCF37 as the cathode material.