People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Żukowska, Grażyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cellscitations
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2017Vibrational spectroscopic studies combined with viscosity analysis and VTF calculation for hybrid polymer electrolytescitations
- 2016Microwave Plasma Chemical Vapor Deposition of SbxOy/C negative electrodes and their compatibility with lithium and sodium Hückel salts - Based, tailored electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
- 2015Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium saltscitations
- 2013Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applicationscitations
- 2011Effect of laser treatment on the surface of copper alloyscitations
- 2010Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytescitations
- 2009Modern generation of polymer electrolytes based on lithium conductive imidazole saltscitations
- 2000Effect of filler surface group on ionic interactions in PEG−LiClO4−Al2O3 composite polyether electrolytescitations
- 2000The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts
Abstract
Polymer electrolytes composed of an acrylonitrile and butyl acrylate copolymer poly(AN-co-BuA) with addition of LiN(CF3SO2)(2) (LiTFSI) or LiI and LiTFSI salt mixture are studied by impedance spectroscopy, DSC, Raman spectroscopy, X-ray diffraction, SEM and TEM. Impedance study shows that the ionic conductivity of the electrolytes containing LiTFSI is strongly dependent on the salt content and transition from "salt-in-polymer" to "polymer-in-salt" regime is observed at high salt content. Gradual changes of physical properties of the studied polymer electrolytes are observed in the course of their prolonged storage under argon atmosphere. These include the increase of glass transition temperature and decrease of ionic conductivity. In order to study the effects of this ageing process, measurements on samples of electrolyte films were repeated after several months. Precipitation of salt, which occurred at the nanometer length scale is observed with the aid of electron microscopy in electrolytes containing more than 84 wt.% of salt. Crystalline salt is not observed in electrolytes with lower amount of salt - however, the results indicate the structural changes of salt aggregates, which strongly influence transport of ions through the electrolyte. For preparation of electrolytes with mixed LiTFSI and LiI salts, a mixture of salts (16 wt.% LiI, 84 wt.% LiTFSI) is used, which exhibits the lowest melting temperature. The electrolyte comprising poly(AN-co-BuA) and 65 wt.% of the salt mixture exhibits high ionic conductivity and turns out to be more stable than electrolytes comprising only LiTFSI salt. (C) 2015 Elsevier Ltd. All rights reserved.