People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fonseca, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2021Durable electroless deposited Ni-P films on NBR for dynamic contacts. Characterization and tribological performancecitations
- 2021The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfortcitations
- 2020Electroless Deposition of Ni-P Coatings on HNBR for Low Friction Rubber Sealscitations
- 2018Contact Pressure and Flexibility of Multipin Dry EEG Electrodescitations
- 2018Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethanecitations
- 2015Electrochemical and structural characterization of nanocomposite Ag-y:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag contentcitations
- 2015Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealingcitations
- 2015Development of polymer wicks for the fabrication of bio-medical sensorscitations
- 2014Electrochemical behaviour of nanocomposite Ag-x:TiN thin films for dry biopotential electrodescitations
- 2014Electrical characterization of Ag:TiN thin films produced by glancing angle depositioncitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes : the effect of annealing treatments on the electrical and mechanical behaviourcitations
- 2014Electrochemical behaviour of nanocomposite Agx:TiN thin filmsfor dry biopotential electrodescitations
- 2014Electrical characterizationofAg:TiNthin films producedbyglancing angle depositioncitations
- 2014Agy:TiNx thin films for dry biopotential electrodes: the effect of composition and structural changes on the electrical and mechanical behaviourscitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behaviorcitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013Structural and Morphological Changes In Ag:TiN Nanocomposite Films promoted by in-vacuum annealingcitations
- 2013Growth characteristics and properties of nanocomposite Ag-doped TiN thin films produced by glancing angle deposition
- 2013Influence of composition, bonding characteristics and microstructure on the properties of AlNxOy films
- 2013Influence of composition, bonding characteristics and microstructure on the electrochemical and optical stability of AlOxNy thin filmscitations
- 2013Nanocomposite Ag:TiN thin films for dry biopotential electrodescitations
- 2011Plasma surface activation and TiN coating of a TPV substrate for biomedical applicationscitations
- 2011Novel TiNx-based biosignal electrodes for electroencephalographycitations
- 2009The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materialscitations
- 2003Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applicationscitations
- 2001Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical and structural characterization of nanocomposite Ag-y:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content
Abstract
Ag-y:TiNx nanocomposite thin films sputtered with different N/Ti atomic ratios and Ag atomic contents were characterized from the structural and morphological points of view. Their electrochemical behaviour was studied in a synthetic sweat solution, aiming at selecting a suitable material for biolectrode applications. An increase of the N/Ti atomic ratio, which is accompanied by an increase of the Ag atomic content, leads to a substantial increase of the roughness and porosity of the samples, especially for N/Ti ratios >0.2. For N/Ti atomic ratios up to 0.3 (15 at.% Ag) no metallic Ag segregation is visible in the TiNx matrix. Hence, the possible formation of TiAg and Ti2Ag intermetallics or even a Ag/TiAg/Ti2Ag phase mixture, although not demonstrated, should not be disregarded. As for the N/Ti atomic ratio = 0.7 (32 at.% Ag) sample, the Ag phases are predominantly concentrated near the interface with the substrate. The amount of Ag phases at the surface of the films remains somewhat low for all TiN under-stoichiometric films, even for Ag atomic contents up to 32 at.%. When the TiNx matrix reaches the stoichiometric condition (sample with N/Ti atomic ratio = 1 and 20 at.% Ag), Ag segregation occurs and metallic Ag aggregates are visible at the surface of the film, leading to a substantially different electrochemical behaviour. The impedance of the Ag-y: TiNx films in synthetic sweat solution is mainly ruled by the roughness/porosity variation, thus the higher the N/Ti atomic ratio, the lower the impedance. The interfacial film/sweat electrochemical noise and drift were similar for all films and comparable to the results obtained for commercial Ag/AgCl electrodes (except for the N/Ti atomic ratio = 1 and 20 at.% Ag film). In view of the results, it may be concluded that the samples with N/Ti atomic ratios = 0.3 (15 at.% Ag) and 0.7 (32 at.% Ag) are the most appropriate for further bioelectrode development.