People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aili, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Tuning Polybenzimidazole-Derived Crosslinked Interpenetrating Network Membranes for Vanadium Redox Flow Batteriescitations
- 2023Tuning Polybenzimidazole-Derived Crosslinked Interpenetrating Network Membranes for Vanadium Redox Flow Batteriescitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2020Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysiscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolidescitations
- 2019Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cellscitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cellscitations
- 2011Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies
Places of action
Organizations | Location | People |
---|
article
Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
Abstract
Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials.