People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fonseca, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2021Durable electroless deposited Ni-P films on NBR for dynamic contacts. Characterization and tribological performancecitations
- 2021The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfortcitations
- 2020Electroless Deposition of Ni-P Coatings on HNBR for Low Friction Rubber Sealscitations
- 2018Contact Pressure and Flexibility of Multipin Dry EEG Electrodescitations
- 2018Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethanecitations
- 2015Electrochemical and structural characterization of nanocomposite Ag-y:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag contentcitations
- 2015Evolution of the functional properties of titanium–silver thin films for biomedical applications: Influence of in-vacuum annealingcitations
- 2015Development of polymer wicks for the fabrication of bio-medical sensorscitations
- 2014Electrochemical behaviour of nanocomposite Ag-x:TiN thin films for dry biopotential electrodescitations
- 2014Electrical characterization of Ag:TiN thin films produced by glancing angle depositioncitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes : the effect of annealing treatments on the electrical and mechanical behaviourcitations
- 2014Electrochemical behaviour of nanocomposite Agx:TiN thin filmsfor dry biopotential electrodescitations
- 2014Electrical characterizationofAg:TiNthin films producedbyglancing angle depositioncitations
- 2014Agy:TiNx thin films for dry biopotential electrodes: the effect of composition and structural changes on the electrical and mechanical behaviourscitations
- 2014Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behaviorcitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013Structural and Morphological Changes In Ag:TiN Nanocomposite Films promoted by in-vacuum annealingcitations
- 2013Growth characteristics and properties of nanocomposite Ag-doped TiN thin films produced by glancing angle deposition
- 2013Influence of composition, bonding characteristics and microstructure on the properties of AlNxOy films
- 2013Influence of composition, bonding characteristics and microstructure on the electrochemical and optical stability of AlOxNy thin filmscitations
- 2013Nanocomposite Ag:TiN thin films for dry biopotential electrodescitations
- 2011Plasma surface activation and TiN coating of a TPV substrate for biomedical applicationscitations
- 2011Novel TiNx-based biosignal electrodes for electroencephalographycitations
- 2009The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materialscitations
- 2003Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applicationscitations
- 2001Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical behaviour of nanocomposite Ag-x:TiN thin films for dry biopotential electrodes
Abstract
Ag-x:TiN nanocomposite thin films with Ag contents ranging from similar to 0.1 up to similar to 47.5 at% obtained by DC reactive sputtering on glass substrates were characterized regarding their electrochemical performance in a synthetic sweat solution, aiming at studying their potential application as bioelectrodes. Correlations between the electrochemical behaviour and their exhibited morphology (porosity) and structure (grain size) were established and discussed in detail. The coatings' open circuit potential (OCP) is ruled by the Ag/TiN galvanic coupling and it decreased with the increase of the Ag content. For Ag contents up to 12.1 at% the OCP was found to be close to that of bulk Ag, but for higher Ag contents the OCP of the Ag-x:TiN samples displayed a steep drop, which was ascribed to the effect of Ag grain size reduction (from similar to 28 to similar to 10 nm). Both SEM and voltammetric experiments confirmed a gradual porosity decrease (densification) of the coatings with increasing Ag content, leading to a reduction of the electroactive area. All samples, besides displaying good chemical stability in chloride media, exhibited low impedance moduli and electrochemical noise similar to that of commercial Ag/AgCl electrodes, thus making them suitable to be used as bioelectrodes, from the electrochemical point of view.