Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Tian Ran

  • Google
  • 2
  • 3
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation24citations
  • 2012Electrodialytic remediation of suspended soil – Comparison of two different soil fractions29citations

Places of action

Chart of shared publication
Kirkelund, Gunvor Marie
2 / 23 shared
Ottosen, Lisbeth M.
2 / 34 shared
Jensen, Pernille Erland
2 / 15 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Kirkelund, Gunvor Marie
  • Ottosen, Lisbeth M.
  • Jensen, Pernille Erland
OrganizationsLocationPeople

article

Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

  • Kirkelund, Gunvor Marie
  • Ottosen, Lisbeth M.
  • Sun, Tian Ran
  • Jensen, Pernille Erland
Abstract

<p>The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell, predominately working under overlimiting current density conditions. Soil 1 was sampled from a pile of excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved the acidification by supplying more reactive H<sup>+ </sup>ions (defined as the H<sup>+</sup> ions causing release of heavy metals from soil particles). The molar ratio of reactive H<sup>+</sup> ions to total produced H<sup>+</sup> ions (<em>R</em><sub>H+</sub>/<em>P</em><sub>H+</sub>) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition the removal efficiencies of heavy metals were also improved. The carbonate buffering system in a soil is the first mechanism reacting with the produced H<sup>+</sup> ions and impeding the heavy metal mobilization. It was found that the effect of improvement on both the acidification process and the removal of heavy metals were more significant in the soil with highest buffering capacity than the soil with low. Energy distribution analysis demonstrated that most energy was consumed by the transport of ionic species through the soil suspension, and then followed by membranes and electrolytes. The pulse current decreased the energy consumption to different extent depending on the pulse frequency. The lowest energy consumption was obtained in the experiment with the highest pulse frequency (96 cycles per day) for both soils.</p>

Topics
  • density
  • impedance spectroscopy
  • experiment
  • reactive
  • current density
  • wood