People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Funkhouser, Gary P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
CO and trans-cinnamaldehyde as corrosion inhibitors of I825, L80-13Cr and N80 alloys in concentrated HCl solutions at high pressure and temperature
Abstract
In this paper, corrosion inhibition by chemisorbed CO, at high pressure and temperature, on a high-Ni ferrous alloy (Incoloy 825) and two high-Fe alloys (13Cr-L80 (Uniloy-420) and N80 steels) in very aggressive conditions (15% (w/w) HCl solution) is described. CO was either directly dosed into the electrolyte, or produced by dehydration of formic acid. It is shown that CO is a very good corrosion inhibitor, the inhibiting effect being even higher at high pressure and temperature than at normal pressure and room temperature. The effect of combining CO with a common acid corrosion inhibitor, trans-cinnamaldehyde (TCA), at high pressure and temperature, was also studied. Under these conditions, the polymerization of TCA may be favored, leading to a thin film on the metal surface that appears to serve as a barrier to corrosion. It was found that, when CO is used in combination with TCA, the inhibiting effect of the latter is considerably intensified.