Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Latham, Julie-Anne

  • Google
  • 1
  • 3
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy18citations

Places of action

Chart of shared publication
Forsyth, Maria
1 / 42 shared
Macfarlane, Douglas
1 / 33 shared
Howlett, Patrick C.
1 / 7 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Forsyth, Maria
  • Macfarlane, Douglas
  • Howlett, Patrick C.
OrganizationsLocationPeople

article

Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy

  • Forsyth, Maria
  • Macfarlane, Douglas
  • Howlett, Patrick C.
  • Latham, Julie-Anne
Abstract

<p>The electrochemical behaviour of the ionic liquid trihexyl(tetradecyl) phosphonium bis(2,4,4-trimethylpentyl)phosphinate ([P<sub>6,6,6,14</sub>][( <sup>i</sup>C<sub>8</sub>)<sub>2</sub>PO<sub>2</sub>]) over different potential ranges, on both an inert substrate (glassy carbon), and AZ31 magnesium alloy has been investigated. On the glassy carbon electrode the ionic liquid exhibits an electrochemical window of 4 V in an argon environment. Anodic cycling of AZ31 in the ionic liquid resulted in a reduction in current density of over two orders of magnitude after one cycle and also stifled ionic liquid oxidation at approximately 2.0 V, indicating a passive response in the ionic liquid as a result of the deposition of a surface film. In contrast, cathodic cycling of AZ31 led to an increasing current density response with progressive cycles. The understanding of this electrochemical behaviour will allow for future optimisation of electrochemical parameters to obtain a robust and corrosion protective film on AZ31 alloy.</p>

Topics
  • Deposition
  • density
  • surface
  • Carbon
  • corrosion
  • Magnesium
  • magnesium alloy
  • Magnesium
  • current density