Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Croll, Stuart G.

  • Google
  • 3
  • 5
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2010Environmental and time dependence of moisture transportation in an epoxy coating and its significance for accelerated weathering23citations
  • 2009Simulation of transient electrochemical impedance spectroscopy due to water uptake or oxide growth7citations
  • 2003UV curable polymers with organically modified clay as the nanoreinforcements2citations

Places of action

Chart of shared publication
Shi, Xiaodong
1 / 2 shared
Webster, Dean C.
1 / 4 shared
Uhl, Fawn M.
1 / 1 shared
Wong, Shing Chung
1 / 1 shared
Davuluri, Siva Prashanth
1 / 1 shared
Chart of publication period
2010
2009
2003

Co-Authors (by relevance)

  • Shi, Xiaodong
  • Webster, Dean C.
  • Uhl, Fawn M.
  • Wong, Shing Chung
  • Davuluri, Siva Prashanth
OrganizationsLocationPeople

article

Simulation of transient electrochemical impedance spectroscopy due to water uptake or oxide growth

  • Croll, Stuart G.
Abstract

<p>Coatings are often employed to prevent, or at least delay, corrosion of a metallic substrate. The topcoat is often also intended to be a barrier to environmental moisture and any entrained, corrosive ions reaching the substrate. The protective ability of a coating system is very well monitored by electrochemical impedance spectroscopy since it can measure changes as the protective coatings deteriorate, as they absorb water and as they permit the substrate to corrode. Infiltration of water and ions into the coating can also be measured by EIS to deduce approximate water uptake. EIS analysis in coating systems is often predicated on the system being stable over the timeframe of the spectral measurement, which if taken from 100 kHz to 0.01 Hz, or even 0.001 Hz, may take as long as an hour, or more. EIS measurement is most often accomplished by the use of an aqueous electrolyte solution as the electrical contact at the top of the coating, with the metallic substrate used as the other electrical contact. The ingress of aqueous solution is likely to result in time-dependent dielectric or chemical changes to the coating/substrate system. This work shows how these changes, during the spectral measurement period, produce a Bode plot that has a slope of magnitude slightly less than 1. This capacitive response to non-steady state water uptake is commonly characterized by a constant phase element (CPE) in an equivalent circuit model for the material, and equations developed here can be used to deduce the diffusion coefficient based on the CPE.</p>

Topics
  • corrosion
  • phase
  • simulation
  • laser emission spectroscopy
  • electrochemical-induced impedance spectroscopy
  • cloud-point extraction