People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zalewska, Aldona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023The Influence of Ionizing Radiation on Paclitaxel-Loaded Nanoparticles Based on PLGAcitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
- 2010Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytescitations
- 2007Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic fillercitations
- 2006Physico- and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2citations
- 2004Effect of cation and salt concentration on conductivity and microstructure characteristics of polyether electrolytes doped with alkali metal perchloratescitations
- 2003New poly(acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterizationcitations
- 2000Effect of filler surface group on ionic interactions in PEG−LiClO4−Al2O3 composite polyether electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler
Abstract
Gel polymer electrolyte membranes composed of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) and surface modified aluminum or titanium oxide were prepared according to the so-called Bellcore process. Modifications were done by impregnating ceramic powder with 1–8% sulphuric acid aqueous solutions. Filler grain size varied from 10 to 12 μm. The membranes were conditioned in liquid electrode—1 mol/l LiClO4 in PC. The ionic conductivity of polymer membrane increased by more than one order of magnitude upon the addition of filler into polymer host. For electrolyte membrane containing modified aluminum or titanium oxide, the interfacial resistance is stable in time as opposed to unmodified gel electrolytes. An increase in lithium transference number is observed upon the addition of filler. Lithium transference number also increases with the fraction of acidic surface groups.