People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Bp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Assessment of environmental sustainability of nickel required for mobility transitioncitations
- 2022Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behaviorcitations
- 2022A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquidscitations
- 2022Green and Controllable Preparation of Cu/Zn Alloys Using Combined Electrodeposition and Redox Replacementcitations
- 2022Targeted surface modification of Cu/Zn/Ag coatings and Ag/Cu particles based on sacrificial element selection by electrodeposition and redox replacementcitations
- 2021Cyclic voltammetry and potentiodynamic polarization studies of chalcopyrite concentrate in glycine mediumcitations
- 2021Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particlescitations
- 2020A sustainable two-layer lignin-anodized composite coating for the corrosion protection of high-strength low-alloy steelcitations
- 2020Investigation of the anticorrosion performance of lignin coatings after crosslinking with triethyl phosphate and their adhesion to a polyurethane topcoat
- 2019Modelling of silver anode dissolution and the effect of gold as impurity under simulated industrial silver electrorefining conditionscitations
- 2018From waste to valuable resource: Lignin as a sustainable anti-corrosion coatingcitations
- 2018A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streamscitations
- 2018Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid systemcitations
- 2018Kinetic study and modelling of silver dissolution in synthetic industrial silver electrolyte as a function of electrolyte composition and temperaturecitations
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensorscitations
- 2017Leaching of Sb from TROF furnace Doré slagcitations
- 2016Carbon nanotube-copper composites by electrodeposition on carbon nanotube fiberscitations
- 2006Formation of ultra-thin amorphous conversion films on zinc alloy coatingscitations
- 2002Investigating changes in corrosion mechanism induced by laser welding galvanised steel specimens using scanning vibrating electrode techniquecitations
Places of action
Organizations | Location | People |
---|
article
Formation of ultra-thin amorphous conversion films on zinc alloy coatings
Abstract
<p>Within the two parts of this contribution a detailed investigation of the nucleation and growth of ultra-thin amorphous conversion coatings on hot dip galvanised steel is reported. The first part deals with the composition and reactivity of the native ultra-thin oxyhydroxide films that are formed on the zinc alloy surface during the hot dip galvanising process due to the enrichment of aluminium at the outer surface of the alloy coating. Complimentary surface analytical techniques such as FT-IR-spectroscopy at grazing incidence and X-ray photo electron spectroscopy, high resolution AFM on selected grains to study the surface topography and cyclovoltammetry as well as quasi stationary current potential curves and Kelvin probe measurements to study surface ion and electron transfer reactions were applied. Changes in the chemical composition, the electronic properties and the morphology of the ultra-thin surface could thereby be analysed. The surface of the ZnAl alloy is composed of an about 3-4 nm thick mixed Zn and Al-oxyhydroxide layer with Zn-oxyhydroxide slightly enriched at the outermost surface. This mixed oxyhydroxide causes to a significant inhibition of electron transfer reactions. During alkaline cleaning the surface is nanoscopically roughened and the mixed oxyhydroxide is converted into an electro-conducting hydroxyl rich pure Zn-oxyhydroxide layer with a thickness of about 4 nm. In the second part of this paper the effect of the inorganic surface layer on the film formation is correlated with these findings.</p>