People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Samir, My Azizi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers
Abstract
Nanocomposite polymer electrolytes based on high-molecular weight poly(oxyethylene) (POE) were prepared from high aspect ratio cellulosic whiskers and lithium trifluoromethyl sulfonyl imide (LiTFSI). Prior to the polymer electrolyte characterization, the polymer/whiskers nanocomposites were characterized using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Interactions between cellulose and POE were evidenced. The main effect of the filler was a thermal stabilization of the storage modulus for the composites above the melting point of the complexes POE/LiTFSI. The ionic conductivity was quite consistent with the specifications of lithium batteries.