People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Płocharski, Janusz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Substrate-Induced Variances in Morphological and Structural Properties of MoS<inf>2</inf> Grown by Chemical Vapor Deposition on Epitaxial Graphene and SiO<inf>2</inf>citations
- 2012ER suspensions of composite core-shell microspheres with improved sedimentation stabilitycitations
- 2009Ionically conductive polymers for ER fluid preparation
- 2009Electrorheological fluids containing phosphorylated polystyrene-co-divinylbenzenecitations
- 2006Electrorheological effect in hybrid fluids with liquid crystalline additivescitations
- 2005Electrorheological fluids based on polymer electrolytescitations
- 2005Electrorheological fluids based on modified polyacrylonitrilecitations
- 2005Study of electrorheological properties of poly (p -phenylene) dispersionscitations
Places of action
Organizations | Location | People |
---|
article
Electrorheological fluids based on polymer electrolytes
Abstract
The phenomenon of electrorheological activity taking part in so called electrorheological fluids (ERFs) relies on strong and reversible changes of fluid viscosity upon application of electric field and finds interesting technical applications. ERFs typically comprise dispersions of polarisable solid particles in liquid matrices. The paper describes studies on complexes of polyacrylonitrile with various salts of alkaline elements. The materials in a powder form were dispersed in silicone oil as well as in active matrices containing a liquid crystalline polymer. It was found that these novel systems were substantially anhydrous and electrorheologically active. The observed ER effect was relatively high and accompanied by very low current consumption. The magnitude of the ER effect was correlated with bulk ionic conductivity of the studied materials. The optimal bulk conductivity giving the highest ER effect at reasonably low currents amounted to about 10−5 S/cm. Higher conductivities resulted in higher currents only and saturation of the yield stress values. It was also shown that dispersions of the polymer complexes in a solution of poly(n-hexyl isocyanatye) in xylene manifested enhanced ER activity.