People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Howlett, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Single‐ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolytecitations
- 2021Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquidscitations
- 2020Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytescitations
- 2020Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteriescitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storagecitations
- 2016Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquidscitations
- 2016In-situ-activated N-doped mesoporous carbon from a protic salt and its performance in supercapacitorscitations
- 2015Ionic transport through a composite structure of N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystals reinforced with polymer nanofibrescitations
- 2015Enhanced ionic mobility in Organic Ionic Plastic Crystal – Dendrimer solid electrolytescitations
- 2010Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloycitations
- 2010Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
Places of action
Organizations | Location | People |
---|
article
Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids
Abstract
<p>In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm<sup>− 2</sup>. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na<sup>+</sup>/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na<sup>+</sup>-salt concentrations to further understand the mechanism.</p>