Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vandendael, I.

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010A method to detect retained gas during AC electrograining using in-situ small angle X-ray scattering7citations

Places of action

Chart of shared publication
Rayment, Trevor
1 / 6 shared
Davenport, Alison J.
1 / 37 shared
Blajiev, O.
1 / 2 shared
Hammons, Joshua
1 / 2 shared
Raes, M.
1 / 1 shared
Terryn, H.
1 / 27 shared
Hubin, A.
1 / 4 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Rayment, Trevor
  • Davenport, Alison J.
  • Blajiev, O.
  • Hammons, Joshua
  • Raes, M.
  • Terryn, H.
  • Hubin, A.
OrganizationsLocationPeople

article

A method to detect retained gas during AC electrograining using in-situ small angle X-ray scattering

  • Rayment, Trevor
  • Vandendael, I.
  • Davenport, Alison J.
  • Blajiev, O.
  • Hammons, Joshua
  • Raes, M.
  • Terryn, H.
  • Hubin, A.
Abstract

AC electrochemical processes have found applications in controlled surface roughening of aluminium (AC electrograining), fine-tip sharpening for field ion microscopy (AC machining) and thin film anodising (AC anodising). The formation of a surface layer and copious amounts of hydrogen gas are inherent in these AC processes. The presence of a resistance is observed in these processes but it is the source of the resistance that is important to the understanding of ionic transport through the surface film.The AC electrograining process is chosen here, as the annual worldwide production of aluminium plate for high quality lithographic printing and for energy storage super-capacitors is in excess of 800 km(2). In this study, a method to detect gas in the surface layer (smut) in-situ with Small Angle X-ray Scattering (SAXS) is proposed. The total scattering from the in-situ SAXS is used with knowledge of the total volume of smut to explain how a gas fraction can be determined by comparing two samples. Results suggest that a gas fraction can be retained in smut during AC electrograining, the degree to which varies with smut properties. (C) 2010 Elsevier B.V. All rights reserved.

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • aluminium
  • Hydrogen
  • small angle x-ray scattering
  • microscopy