Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brandl, Martin

  • Google
  • 5
  • 7
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Melt-extruded formulations of fenofibrate with various grades of hydrogenated phospholipid exhibit promising in-vitro biopharmaceutical behavior1citations
  • 2023Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery8citations
  • 2019A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib29citations
  • 2019A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib29citations
  • 2018Permeation behavior and supramolecular structures of mono- / diacyl solid phospholipid dispersions of celecoxib in simulated intestinal fluid.citations

Places of action

Chart of shared publication
Skupin-Mrugalska, Paulina
2 / 2 shared
Bauer-Brandl, Annette
2 / 3 shared
Czajkowski, Mikołaj
2 / 2 shared
Słaba, Aleksandra
1 / 1 shared
Milanowski, Bartłomiej
1 / 3 shared
Jacobsen, Ann-Christin
4 / 4 shared
Elvang, Philipp Alexander
3 / 3 shared
Chart of publication period
2024
2023
2019
2018

Co-Authors (by relevance)

  • Skupin-Mrugalska, Paulina
  • Bauer-Brandl, Annette
  • Czajkowski, Mikołaj
  • Słaba, Aleksandra
  • Milanowski, Bartłomiej
  • Jacobsen, Ann-Christin
  • Elvang, Philipp Alexander
OrganizationsLocationPeople

article

A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib

  • Elvang, Philipp Alexander
  • Jacobsen, Ann-Christin
  • Brandl, Martin
Abstract

<p>The current study documents enhanced apparent solubility of the BCS class II drug celecoxib (CXB) when formulated as solid phospholipid dispersion (SPD) with either mono- or diacyl-phospholipids by freeze drying from hydro-alcoholic solvent. The enhanced solubility upon dispersion in buffer or fasted state simulated intestinal fluid (FaSSIF) is interpreted to be due to two effects: (1) amorphization of CXB, inducing supersaturation, which is also observed when CXB is freeze dried in the absence of phospholipids and (2) association of CXB with spontaneously forming colloidal structures, such as vesicles and/or micelles, promoting solubilization. The latter effect depended on the CXB-to-phospholipid ratio, where monoacyl-phospholipid was a more efficient solubilizer than diacyl-phospholipid. In the case of diacyl-phospholipid, solubilization also depended strongly on the dispersion medium, where FaSSIF induced a more pronounced solubilization effect than buffer. In contrast, a significantly enhanced in-vitro permeability of CXB across a biomimetic barrier (Permeapad®) was found only with low lipid contents up to a CXB to phospholipid mass-ratio of 1:10 or in the absence of phospholipid; above this critical ratio, permeability was not enhanced, i.e. comparable to that observed with a suspension of non-processed (crystalline) drug. This non-linear dissolution-/permeation-behavior was observed independently of (1) the type of phospholipid (monoacyl- or diacyl-) employed and (2) the dispersion medium (buffer or FaSSIF), despite the fact that different patterns of co-existing colloidal states were observed from mono-/diacyl-phospholipid formulations in buffer/FaSSIF (small bile salt micelles, intermediate size mixed micelles and large vesicular structures), assessed by asymmetric flow field-flow fractionation/multi angle laser light scattering. A uniform mechanistic hypothesis is presented to describe the impact of phospholipids on CXB permeation behavior: Obviously, the critical drug-to-phospholipid ratio represents a compromise between optimal stabilization of the amorphous state-induced supersaturation and reduced thermodynamic activity of CXB due to association with colloidal states, where the type of colloidal state (vesicle or micelle) appears to be of minor importance.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • amorphous
  • permeability
  • forming
  • drying
  • laser light scattering
  • field-flow fractionation