Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sandler, Niklas

  • Google
  • 5
  • 31
  • 487

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing107citations
  • 2015Three-Dimensional Printing of Drug-Eluting Implants150citations
  • 2013A step toward development of printable dosage forms for poorly soluble drugs90citations
  • 2007Screening for differences in the amorphous state of indomethacin using multivariate visualization104citations
  • 2005Pellet manufacturing by extrusion-spheronization using process analytical technology36citations

Places of action

Chart of shared publication
Kronlund, Dennis
1 / 2 shared
Willför, Stefan
1 / 24 shared
Moritz, Niko
1 / 8 shared
Öblom, Heidi
1 / 1 shared
Preis, Maren
1 / 1 shared
Xu, Wen Yang
1 / 3 shared
Pranovich, Andrey
1 / 7 shared
Uppstu, Peter
1 / 5 shared
Hemming, Jarl
1 / 6 shared
Xu, Chunlin
1 / 23 shared
Wang, Xiaoju
1 / 14 shared
Rantanen, Jukka
3 / 43 shared
Water, Jorrit Jeroen
1 / 2 shared
Aho, Johanna
1 / 6 shared
Bøtker, Johan Peter
1 / 9 shared
Bohr, Adam
1 / 6 shared
Mørck Nielsen, Hanne
1 / 4 shared
Raijada, Dharaben Kaushikkumar
1 / 2 shared
Fors, Daniela
1 / 1 shared
Wisaeus, Erik
1 / 1 shared
Genina, Natalja
1 / 8 shared
Peltonen, Jouko
1 / 24 shared
Gordon, Keith C.
1 / 14 shared
Rades, Thomas
1 / 107 shared
Strachan, Clare
1 / 5 shared
Yliruusi, Jouko
2 / 13 shared
Savolainen, Marja
1 / 2 shared
Heinz, Andrea
1 / 5 shared
Heinämäki, Jyrki
1 / 6 shared
Römer, Meike
1 / 1 shared
Marvola, Martti
1 / 2 shared
Chart of publication period
2018
2015
2013
2007
2005

Co-Authors (by relevance)

  • Kronlund, Dennis
  • Willför, Stefan
  • Moritz, Niko
  • Öblom, Heidi
  • Preis, Maren
  • Xu, Wen Yang
  • Pranovich, Andrey
  • Uppstu, Peter
  • Hemming, Jarl
  • Xu, Chunlin
  • Wang, Xiaoju
  • Rantanen, Jukka
  • Water, Jorrit Jeroen
  • Aho, Johanna
  • Bøtker, Johan Peter
  • Bohr, Adam
  • Mørck Nielsen, Hanne
  • Raijada, Dharaben Kaushikkumar
  • Fors, Daniela
  • Wisaeus, Erik
  • Genina, Natalja
  • Peltonen, Jouko
  • Gordon, Keith C.
  • Rades, Thomas
  • Strachan, Clare
  • Yliruusi, Jouko
  • Savolainen, Marja
  • Heinz, Andrea
  • Heinämäki, Jyrki
  • Römer, Meike
  • Marvola, Martti
OrganizationsLocationPeople

article

Screening for differences in the amorphous state of indomethacin using multivariate visualization

  • Gordon, Keith C.
  • Sandler, Niklas
  • Rades, Thomas
  • Strachan, Clare
  • Yliruusi, Jouko
  • Savolainen, Marja
  • Heinz, Andrea
Abstract

The aim of this study was to examine molecular-level differences in the amorphous state of indomethacin prepared from both alpha- and gamma-polymorphs using various preparative techniques: milling, quench cooling of a melt, slow cooling of a melt and spray drying. X-ray powder diffraction (XRPD), polarizing light microscopy (PLM), differential scanning calorimetry, as well as mid-infrared (MIR), near infrared (NIR) and Raman spectroscopy were used to analyze the samples after preparation. Principal component analysis (PCA) was used to visualize the differences in the spectroscopic data. According to the XRPD and PLM measurements, all samples except the spray dried indomethacin were amorphous after preparation. Spray dried indomethacin had some remaining residual crystallinity. Differences in the amorphous samples could be found on molecular level: the milled samples clustered separately from the other amorphous samples in the PCA of MIR, NIR and Raman spectra. This could be due to either small degrees of undetected crystallinity remaining in the samples after milling or differences in the hydrogen bonding in the different amorphous samples of indomethacin. The spectroscopic techniques revealed different information about the samples. Raman spectroscopy was most sensitive to differences caused by the preparation techniques and degradation products. Multivariate methods, such as PCA, offer an efficient tool to screen for these differences in the amorphous state.

Topics
  • amorphous
  • melt
  • grinding
  • milling
  • Hydrogen
  • differential scanning calorimetry
  • Raman spectroscopy
  • crystallinity
  • drying
  • microscopy