Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leng, Donglei

  • Google
  • 3
  • 10
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Exploring the effect of protein secondary structure on the solid state and physical stability of protein-based amorphous solid dispersions2citations
  • 2024Investigating the influence of protein secondary structure on the dissolution behavior of β-lactoglobulin-based amorphous solid dispersions4citations
  • 2022Stabilizing Mechanisms of β-Lactoglobulin in Amorphous Solid Dispersions of Indomethacin14citations

Places of action

Chart of shared publication
Foderà, Vito
3 / 8 shared
Ochner, Julia
1 / 1 shared
Zhuo, Xuezhi
3 / 3 shared
Löbmann, Korbinian
3 / 49 shared
Tozzetti, Martina
1 / 1 shared
Arnous, Anis
1 / 1 shared
Zhao, Min
1 / 10 shared
Bergström, Christel A. S.
1 / 6 shared
Kabedev, Aleksei
1 / 1 shared
Larsson, Per
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Foderà, Vito
  • Ochner, Julia
  • Zhuo, Xuezhi
  • Löbmann, Korbinian
  • Tozzetti, Martina
  • Arnous, Anis
  • Zhao, Min
  • Bergström, Christel A. S.
  • Kabedev, Aleksei
  • Larsson, Per
OrganizationsLocationPeople

article

Exploring the effect of protein secondary structure on the solid state and physical stability of protein-based amorphous solid dispersions

  • Foderà, Vito
  • Leng, Donglei
  • Ochner, Julia
  • Zhuo, Xuezhi
  • Löbmann, Korbinian
Abstract

<p>Amorphous solid dispersions (ASDs) using proteins as carriers have emerged as a promising strategy for stabilizing amorphous drug molecules. Proteins possess diverse three-dimensional structures that significantly influence their own properties and may also impact the properties of ASDs. We prepared β-lactoglobulin (BLG) with different contents of β-sheet and α-helical secondary structures by initially dissolving BLG in different mixed solvents, containing different ratios of water, methanol/ethanol, and acetic acid, followed by spray drying of the solutions. Our findings revealed that an increase in α-helical content resulted in a decrease in the glass transition temperature (T<sub>g</sub>) of the protein. Subsequently, we utilized the corresponding mixed solvents to dissolve both BLG and the model drug celecoxib (CEL), allowing the preparation of ASDs containing either β-sheet-rich or α-helix/random coil-rich BLG. Using spray drying, we successfully developed BLG-based ASDs with drug loadings ranging from 10 wt% to 90 wt%. At drug loadings below 40 wt%, samples prepared using both methods exhibited single-phase ASDs. However, heterogeneous systems formed when the drug loading exceeded 40 wt%. At higher drug loadings, physical stability assessments demonstrated that the α-helix/random coil-rich BLG structure exerted a more pronounced stabilizing effect on the drug-rich phase compared to the β-sheet-rich BLG. Overall, our results highlight the importance of considering protein secondary structure in the design of ASDs.</p>

Topics
  • dispersion
  • amorphous
  • phase
  • glass
  • glass
  • glass transition temperature
  • random
  • drying
  • dissolving