People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knopp, Matthias M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021The Influence of Temperature and Viscosity of Polyethylene Glycol on the Rate of Microwave-Induced In Situ Amorphization of Celecoxibcitations
- 2021Microwave-Induced in Situ Drug Amorphization Using a Mixture of Polyethylene Glycol and Polyvinylpyrrolidonecitations
- 2021Studying the impact of the temperature and sorbed water during microwave-induced In Situ amorphizationcitations
- 2020The influence of drug and polymer particle size on the in situ amorphization using microwave irradiationcitations
Places of action
Organizations | Location | People |
---|
article
The influence of drug and polymer particle size on the in situ amorphization using microwave irradiation
Abstract
<p>In this study, the impact of drug and polymer particle size on the in situ amorphization using microwave irradiation at a frequency of 2.45 GHz were investigated. Using ball milling and sieve fractioning, the crystalline drug celecoxib (CCX) and the polymer polyvinylpyrrolidone (PVP) were divided into two particle size fractions, i.e. small (<71 µm) and large (>71 µm) particles. Subsequently, compacts containing a drug load of 30% (w/w) crystalline CCX in PVP were prepared and subjected to microwave radiation for an accumulated duration of 600 sec in intervals of 60 sec as well as continuously for 600 sec. It was found that the compacts containing small CCX particles displayed faster rates of amorphization and a higher degree of amorphization during microwave irradiation as compared to the compacts containing large CCX particles. For compacts with small CCX particles, interval exposure to microwave radiation resulted in a maximum degree of amorphization of 24%, whilst a fully amorphous solid dispersion (100%) was achieved after 600 sec of continuous exposure to microwave radiation. By monitoring the temperature in the core of the compacts during exposure to microwave radiation using a fiber optic temperature probe, it was found that the total exposure time above the glass transition temperature (T<sub>g</sub>) was shorter for the interval exposure method compared to continuous exposure to microwave radiation. Therefore, it is proposed that the in situ formation of an amorphous solid dispersion is governed by the dissolution of drug into the polymer, which most likely is accelerated above the T<sub>g</sub> of the compacts. Hence, prolonging the exposure time above the T<sub>g</sub>, and increasing the surface area of the drug by particle size reduction will increase the dissolution rate and thus, rate and degree of amorphization of CCX during exposure to microwave radiation.</p>