Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miriyala, Nikhila

  • Google
  • 1
  • 4
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Activated carbon as a carrier for amorphous drug delivery72citations

Places of action

Chart of shared publication
Lowry, Deborah
1 / 1 shared
Ouyang, Defang
1 / 1 shared
Perrie, Yvonne
1 / 7 shared
Kirby, Daniel J.
1 / 4 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Lowry, Deborah
  • Ouyang, Defang
  • Perrie, Yvonne
  • Kirby, Daniel J.
OrganizationsLocationPeople

article

Activated carbon as a carrier for amorphous drug delivery

  • Lowry, Deborah
  • Miriyala, Nikhila
  • Ouyang, Defang
  • Perrie, Yvonne
  • Kirby, Daniel J.
Abstract

Recent research on porous silica materials as drug carriers for amorphous and controlled drug delivery has shown promising results. However, due to contradictory literature reports on toxicity and high costs of production, it is important to explore alternative safe and inexpensive porous carriers. In this study, the potential of activated carbon (AC) as an amorphous drug carrier was investigated using paracetamol (PA) and ibuprofen (IBU) as model drugs. The solution impregnation method was used for drug loading, with loading efficiency determined by UV spectroscopy and drug release kinetics studied using USP II dissolution apparatus. The physical state of the drug in the complex was characterised using differential scanning calorimetry and X-ray diffractions techniques, whilst sites of drug adsorption were studied using Fourier transform infrared spectroscopy and N<sub>2</sub> adsorption techniques. In addition, the cytotoxicity of AC on human colon carcinoma (Caco-2) cells was assessed using the MTT assay. Results presented here reveal that, for PA/AC and IBU/AC complexes, the saturation solubility of the drug in the loading solvent appears to have an effect on the drug loading efficiency and the physical state of the drug loaded, whilst drug release kinetics were affected by the wettability of the activated carbon particles. Furthermore, activated carbon microparticles exhibited very low cytotoxicity on Caco-2 cells at the concentrations tested (10–800 μg/mL). This study, therefore, supports the potential of activated carbon as a carrier for amorphous drug delivery.

Topics
  • porous
  • impedance spectroscopy
  • amorphous
  • Carbon
  • x-ray diffraction
  • differential scanning calorimetry
  • toxicity
  • Fourier transform infrared spectroscopy