People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klajnert-Maculewicz, Barbara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Dendrimersomes: Biomedical applicationscitations
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Effcient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
- 2020Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumincitations
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Ecient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Deliverycitations
- 2019Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitrocitations
- 2019PAMAM and PPI Dendrimers in Biophysical and Thermodynamic Studies on the Delivery of Therapeutic Nucleotides, Nucleosides and Nucleobase Derivatives for Anticancer Applicationcitations
- 2019Non-Traditional Intrinsic Luminescence (NTIL): Dynamic Quenching Demonstrates the Presence of Two Distinct Fluorophore Types Associated with NTIL Behavior in Pyrrolidone-Terminated PAMAM Dendrimerscitations
- 2017Dendrimers as nanocarriers for nucleoside analoguescitations
- 2017Dendrimers for fluorescence-based bioimagingcitations
- 2017Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Linescitations
- 2016Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimerscitations
- 2015Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological actioncitations
- 2013Dendrimers in Biomedical Applicationscitations
- 2013Dendrimers as Antiamyloidogenic Agents. Dendrimer-amyloid Aggregates Morphology and Cell Toxicitycitations
- 2013Characterization of Dendrimers and Their Interactions with Biomolecules for Medical use by Means of Electron Magnetic Resonancecitations
- 2013Natural and Synthetic Biomaterials as Composites of Advanced Drug Delivery Nano Systems (ADDNSS). Biomedical Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Dendrimers as nanocarriers for nucleoside analogues
Abstract
Dendrimers constitute a class of hyperbranched macromolecules with several potential applications due to their unique properties such as a well-defined structure, multivalency and biocompatibility. These polymers became one of the most promising drug nanocarriers, providing improved solubility of therapeutics, high loading capacity and controllable biodistribution pattern. In addition, the use of dendrimers as drug delivery devices in cancer therapies may help to overcome the resistance mechanisms by transporting activated drug molecules directly to cancer cells.In the recent years, dendrimers were intensively studied for delivery of nucleoside analogues (NAs), essential elements of antiviral therapies, as well as treatments of leukemia, lymphoma and various types of solid tumors. These agents act as antimetabolites, competing with physiological nucleosides, and interacting with intracellular enzymes and nuclear acids to induce cytotoxicity. However, efficiency of NAs-based therapies is often limited by factors like fast metabolism, disadvantageous biodistribution, low solubility and various side effects. In case of treatment of leukemia, target cells usually develop drug resistance, which reduces the activity of nucleoside analogues even further. Thus, drug carrier systems are studied to improve the efficacy and specificity of action of these compounds.In this review, we summarize available data concerning the possibility of application of dendrimers as delivery devices for nucleoside analogues and their active, triphosphate forms.