People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barreiros, Susana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2021Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systemscitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solventscitations
- 2017Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatincitations
- 2017Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hostscitations
- 2016Solubility and Permeability Enhancement of active compounds: Therapeutic Deep Eutectic Systems as New Vehicles for Drug Deliverycitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Design of controlled release systems for THEDES - therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2014Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technologycitations
- 2014Ion jelly conductive properties using dicyanamide-based ionic liquidscitations
- 2012Understanding the Ion Jelly Conductivity Mechanismcitations
- 2008Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaYcitations
Places of action
Organizations | Location | People |
---|
article
Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems
Abstract
<p>A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.</p>