People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Müllertz, Anette
University of Copenhagen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Influence of preparation method and choice of phospholipid on co-amorphization, physical stability, and dissolution behavior of equimolar indomethacin-phospholipid systemscitations
- 2024Drug–Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection
- 2023Amphotericin B and monoacyl-phosphatidylcholine form a stable amorphous complexcitations
- 2023Stability and intrinsic dissolution of vacuum compression molded amorphous solid dispersions of efavirenzcitations
- 2023Coating of Primary Powder Particles Improves the Quality of Binder Jetting 3D Printed Oral Solid Productscitations
- 2022Structured approach for designing drug-loaded solid products by binder jetting 3D printingcitations
- 2021Hot punching for loading of biodegradable microcontainers with budesonide-Soluplus filmcitations
- 2018The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formerscitations
- 2016In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systemscitations
- 2016Supersaturation of zafirlukast in fasted and fed state intestinal media with and without precipitation inhibitorscitations
- 2015Stabilisation of amorphous furosemide increases the oral drug bioavailability in ratscitations
- 2014Physical characterization of photocrosslinked poly(vinyl pyrrolidone) (PVP) hydrogels for drug delivery
- 2014Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorptioncitations
- 2013Spray coating of microcontainers with eudragit using ferromagnetic shadow masks for controlled oral release of poorly water soluble drugs.
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2013Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs.
- 2010Precipitation of a poorly soluble model drug during in vitro lilpolysiscitations
- 2008Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30citations
Places of action
Organizations | Location | People |
---|
article
Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption
Abstract
Oral delivery of drugs, including peptide and protein therapeutics, can be impeded by the presence of the mucus surface-lining the intestinal epithelium. The aim of the present project was to design and characterize biosimilar mucus compatible with Caco-2 cell monolayers cultured in vitro to establish a more representative in vitro model for the intestinal mucosa. The rheological profile of a biosimilar mucus mixture composed of purified gastric mucin, lipids and protein in buffer was optimized by supplementing with an anionic polymer to display viscoelastic properties and a microstructure comparable to freshly isolated porcine intestinal mucus (PIM). Further, this multicomponent biosimilar mucus mixture was optimized with regards to the lipid content in order to obtain cellular biocompatibility with well-differentiated Caco-2 cell monolayers. In contrast, PIM was found to severely disrupt the Caco-2 cell monolayer. When combined with the Caco-2 cell monolayers, the final biosimilar mucus was found to significantly affect the permeability profiles for hydrophobic and hydrophilic small and large model drug compounds in different ways. In conclusion, the present study describes an improvement of the biorelevance of the Caco-2 cell culture model by application of mucus, resulting in an in vitro model of oral mucosa suitable for future assessment of innovative drug delivery approaches.