Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Priemel, Petra A.

  • Google
  • 1
  • 4
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013In situ amorphisation of indomethacin with Eudragit® E during dissolution40citations

Places of action

Chart of shared publication
Laitinen, Riikka
1 / 4 shared
Rades, Thomas
1 / 107 shared
Grohganz, Holger
1 / 43 shared
Strachan, Clare J.
1 / 10 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Laitinen, Riikka
  • Rades, Thomas
  • Grohganz, Holger
  • Strachan, Clare J.
OrganizationsLocationPeople

article

In situ amorphisation of indomethacin with Eudragit® E during dissolution

  • Laitinen, Riikka
  • Priemel, Petra A.
  • Rades, Thomas
  • Grohganz, Holger
  • Strachan, Clare J.
Abstract

In this study, the possibility of utilising in situ crystalline-to-amorphous transformation for the delivery of poorly water soluble drugs was investigated. Compacts of physical mixtures of γ-indomethacin (IMC) and Eudragit® E in 3:1, 1:1 and 1:3 (w/w) ratios were subjected to dissolution testing at pH 6.8 at which IMC but not the polymer is soluble. Compacts changed their colour from white to yellow indicating amorphisation of IMC. X-ray powder diffractometry (XRPD) confirmed the amorphisation and only one glass transition temperature was observed (58.1 °C, 54.4 °C, and 50.1 °C for the 3:1, 1:1 and 1:3 (w/w) drug-to-polymer ratios, respectively). Furthermore, principal component analysis of infrared spectra resulted in clustering of in situ transformed samples together with quench cooled glass solutions for each respective ratio. Subsequent dissolution testing of in situ transformed samples at pH 4.1, at which the polymer is soluble but not IMC, led to a higher dissolution rate than for quench cooled glass solution at 3:1 and 1:1 ratios, but not for the 1:3 ratio. This study showed that crystalline drug can be transformed into amorphous material in situ in the presence of a polymer, leading to the possibility of administering drugs in the amorphous state without physical instability problems during storage.

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • glass
  • glass
  • glass transition temperature
  • clustering