People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Müllertz, Anette
University of Copenhagen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Influence of preparation method and choice of phospholipid on co-amorphization, physical stability, and dissolution behavior of equimolar indomethacin-phospholipid systemscitations
- 2024Drug–Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection
- 2023Amphotericin B and monoacyl-phosphatidylcholine form a stable amorphous complexcitations
- 2023Stability and intrinsic dissolution of vacuum compression molded amorphous solid dispersions of efavirenzcitations
- 2023Coating of Primary Powder Particles Improves the Quality of Binder Jetting 3D Printed Oral Solid Productscitations
- 2022Structured approach for designing drug-loaded solid products by binder jetting 3D printingcitations
- 2021Hot punching for loading of biodegradable microcontainers with budesonide-Soluplus filmcitations
- 2018The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formerscitations
- 2016In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systemscitations
- 2016Supersaturation of zafirlukast in fasted and fed state intestinal media with and without precipitation inhibitorscitations
- 2015Stabilisation of amorphous furosemide increases the oral drug bioavailability in ratscitations
- 2014Physical characterization of photocrosslinked poly(vinyl pyrrolidone) (PVP) hydrogels for drug delivery
- 2014Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorptioncitations
- 2013Spray coating of microcontainers with eudragit using ferromagnetic shadow masks for controlled oral release of poorly water soluble drugs.
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2013Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs.
- 2010Precipitation of a poorly soluble model drug during in vitro lilpolysiscitations
- 2008Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30citations
Places of action
Organizations | Location | People |
---|
article
Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats
Abstract
Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics of the two amorphous forms and of crystalline free acid were investigated. FTIR confirmed molecular differences between the amorphous free acid and salt. The amorphous salt showed a Tg of 101.2 °C, whereas the Tg for the amorphous free acid was found to be 61.8 °C. The amorphous free acid was physically stable for 4 days at 22 °C and 33% relative humidity (RH), while the amorphous salt exhibited physical stability for 291 days at the same storage conditions. When storing the amorphous forms at 40 °C and 75% RH both forms converted to crystalline forms after 2 days. The apparent solubility of the amorphous salt form was higher than that of both amorphous and crystalline free acid in all media studied. All three forms of furosemide exhibited a greater solubility in the presence of biorelevant media as compared to buffer, however, an overall trend for a further increase in solubility in relation to an increase in media surfactant concentration was not seen. The amorphous salt demonstrated an 8- and 20-fold higher intrinsic dissolution rate (IDR) when compared to amorphous and crystalline free acid, respectively. The promising properties of the amorphous salt in vitro were further evaluated in an in vivo study, where solid dosage forms of the amorphous salt, amorphous and crystalline free acid and a solution of furosemide were administered orally to rats. The amorphous salt exhibited a significantly faster Tmax compared to the solution and amorphous and crystalline free acid. Cmax for the solution was significantly higher compared to the three furosemide forms. No significant difference was found in AUC and absolute bioavailability for the solution, crystalline free acid and the two amorphous forms of furosemide. It can be concluded that the higher IDR and higher apparent solubility of the amorphous salt resulted in a faster Tmax compared to the amorphous and crystalline free acid.