People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Line Hagner
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 20233D-printed Radiopaque Microdevices with Enhanced Mucoadhesive Geometry for Oral Drug Deliverycitations
- 2019Artificial gut-on-a-disc platform to evaluate ph sensitive coatings of oral drug delivery devices
- 2019Where Is the Drug? Quantitative 3D Distribution Analyses of Confined Drug-Loaded Polymer Matricescitations
- 2019Evaluation of the solid state form of tadalafil in sub-micron thin films using nanomechanical infrared spectroscopycitations
- 2018Evaluation of the effects of spray drying parameters for producing cubosome powder precursorscitations
- 2018Evaluation of the effects of spray drying parameters for producing cubosome powder precursorscitations
- 2017Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumincitations
- 2016Triple co-culture cell model as an in vitro model for oral particulate vaccine systems
- 2015Stabilisation of amorphous furosemide increases the oral drug bioavailability in ratscitations
- 2013Spray coating of microcontainers with eudragit using ferromagnetic shadow masks for controlled oral release of poorly water soluble drugs.
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2013Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs.
Places of action
Organizations | Location | People |
---|
article
Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats
Abstract
Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics of the two amorphous forms and of crystalline free acid were investigated. FTIR confirmed molecular differences between the amorphous free acid and salt. The amorphous salt showed a Tg of 101.2 °C, whereas the Tg for the amorphous free acid was found to be 61.8 °C. The amorphous free acid was physically stable for 4 days at 22 °C and 33% relative humidity (RH), while the amorphous salt exhibited physical stability for 291 days at the same storage conditions. When storing the amorphous forms at 40 °C and 75% RH both forms converted to crystalline forms after 2 days. The apparent solubility of the amorphous salt form was higher than that of both amorphous and crystalline free acid in all media studied. All three forms of furosemide exhibited a greater solubility in the presence of biorelevant media as compared to buffer, however, an overall trend for a further increase in solubility in relation to an increase in media surfactant concentration was not seen. The amorphous salt demonstrated an 8- and 20-fold higher intrinsic dissolution rate (IDR) when compared to amorphous and crystalline free acid, respectively. The promising properties of the amorphous salt in vitro were further evaluated in an in vivo study, where solid dosage forms of the amorphous salt, amorphous and crystalline free acid and a solution of furosemide were administered orally to rats. The amorphous salt exhibited a significantly faster Tmax compared to the solution and amorphous and crystalline free acid. Cmax for the solution was significantly higher compared to the three furosemide forms. No significant difference was found in AUC and absolute bioavailability for the solution, crystalline free acid and the two amorphous forms of furosemide. It can be concluded that the higher IDR and higher apparent solubility of the amorphous salt resulted in a faster Tmax compared to the amorphous and crystalline free acid.