People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Min
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023The effects of surfactants on the performance of polymer-based microwave-induced in situ amorphizationcitations
- 2022Stabilizing Mechanisms of β-Lactoglobulin in Amorphous Solid Dispersions of Indomethacincitations
- 2021Investigation into the role of the polymer in enhancing microwave-induced in situ amorphizationcitations
- 2021Investigation into the role of the polymer in enhancing microwave-induced in situ amorphizationcitations
- 2017Solid state characterisation and taste masking efficiency evaluation of polymer based extrudates of isoniazid for paediatric administrationcitations
- 2015Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approachescitations
- 2014The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: A case study using olanzapinecitations
- 2014An investigation into the dehydration behavior of paroxetine HCl form i using a combination of thermal and diffraction methods: The identification and characterization of a new anhydrous formcitations
- 2012Identification and characterization of stoichiometric and nonstoichiometric hydrate forms of paroxetine HCl: Reversible changes in crystal dimensions as a function of water absorptioncitations
- 2012Development of fully amorphous dispersions of a low Tgdrug via co-spray drying with hydrophilic polymerscitations
Places of action
Organizations | Location | People |
---|
article
Development of fully amorphous dispersions of a low Tgdrug via co-spray drying with hydrophilic polymers
Abstract
The aim of the study was to prepare molecular dispersions of a physically highly unstable amorphous drug, paracetamol (acetaminophen with a Tgof ca. 25 °C) via co-spray drying with a variety of polymers. Solid dispersions at a range of drug loadings (10-90%w/w) using hydroxypropyl methylcellulose/acetate succinate (HPMC/HPMC AS), polyvinylpyrrolidone (PVP) and copovidone were produced and characterised by modulated temperature differential scanning calorimetry (MTDSC), thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). PVP-based polymers showed a greater tendency than the HPMC-based group to generate temperature-stable dispersions. In particular, copovidone (Plasdone® S-630) was found to be the most effective of the polymers studied and could formulate molecular dispersions at drug loadings up to and including 40%w/w. However, no evidence for direct drug-polymer interactions was found for such systems as a possible stabilising mechanism. The expected relationship of a higher Tgof the polymer leading to greater stabilisation was not observed, while there was an inverse relationship between viscosity grade and amorphous phase generation. The study has therefore shown that temperature-stable amorphous dispersions of a low Tgdrug may be prepared by co-spray drying, particularly using PVP-based polymers. © 2012 Elsevier B.V. All rights reserved.