Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heinz, Andrea

  • Google
  • 5
  • 26
  • 257

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Influence of co-solvents on properties of terpene-based eutectic mixtures3citations
  • 2023Protease-Responsive Hydrogel Microparticles for Intradermal Drug Delivery8citations
  • 2013In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials19citations
  • 2009Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy123citations
  • 2007Screening for differences in the amorphous state of indomethacin using multivariate visualization104citations

Places of action

Chart of shared publication
Rades, Thomas
2 / 107 shared
Czyrski, Grzegorz S.
1 / 1 shared
Noddeland, Heidi K.
1 / 2 shared
Caruso, Frank
1 / 16 shared
Petersson, Karsten
1 / 4 shared
Lind, Marianne
1 / 1 shared
Malmsten, Martin
1 / 4 shared
Keeley, Fred W.
1 / 1 shared
Sippl, Wolfgang
1 / 1 shared
Neubert, Reinhard H. H.
1 / 1 shared
Schmelzer, Christian E. H.
1 / 2 shared
Jahreis, Günther
1 / 1 shared
Ruttkies, Christoph K. H.
1 / 1 shared
Wichapong, Kanin
1 / 1 shared
Schräder, Christoph U.
1 / 1 shared
Peltonen, L.
1 / 2 shared
Strachan, C.
1 / 1 shared
Yliruusi, J.
1 / 1 shared
Savolainen, M.
1 / 1 shared
Kogermann, K.
1 / 1 shared
Aaltonen, J.
1 / 2 shared
Gordon, Keith C.
1 / 14 shared
Sandler, Niklas
1 / 5 shared
Strachan, Clare
1 / 5 shared
Yliruusi, Jouko
1 / 13 shared
Savolainen, Marja
1 / 2 shared
Chart of publication period
2024
2023
2013
2009
2007

Co-Authors (by relevance)

  • Rades, Thomas
  • Czyrski, Grzegorz S.
  • Noddeland, Heidi K.
  • Caruso, Frank
  • Petersson, Karsten
  • Lind, Marianne
  • Malmsten, Martin
  • Keeley, Fred W.
  • Sippl, Wolfgang
  • Neubert, Reinhard H. H.
  • Schmelzer, Christian E. H.
  • Jahreis, Günther
  • Ruttkies, Christoph K. H.
  • Wichapong, Kanin
  • Schräder, Christoph U.
  • Peltonen, L.
  • Strachan, C.
  • Yliruusi, J.
  • Savolainen, M.
  • Kogermann, K.
  • Aaltonen, J.
  • Gordon, Keith C.
  • Sandler, Niklas
  • Strachan, Clare
  • Yliruusi, Jouko
  • Savolainen, Marja
OrganizationsLocationPeople

article

Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy

  • Peltonen, L.
  • Strachan, C.
  • Yliruusi, J.
  • Savolainen, M.
  • Kogermann, K.
  • Heinz, Andrea
  • Aaltonen, J.
Abstract

<p>Amorphous drugs have a higher kinetic solubility and dissolution rate than their crystalline counterparts. However, this advantage is lost if the amorphous form converts to the stable crystalline form during the dissolution as the dissolution rate will gradually change to that of the crystalline form. The purpose of this study was to use in situ Raman spectroscopy in combination with either partial least squares discriminant analysis (PLS-DA) or partial least squares (PLS) regression analysis to monitor as well as quantify the solid-phase transitions that take place during the dissolution of two amorphous drugs, indomethacin (IMC) and carbamazepine (CBZ). The dissolution rate was higher from amorphous IMC compared to the crystalline alpha- and gamma-forms. However, the dissolution rate started to slow down during the experiment. In situ Raman analysis verified that at that time point the sample started to crystallize to the alpha-form. Amorphous CBZ instantly started to crystallize upon contact with the dissolution medium. The transition from the amorphous form to CBZ dihydrate appears to go through the anhydrate form I. Based on the PLS analysis the amount of form I formed in the sample during the dissolution affected the dissolution rate. Raman spectroscopy combined with PLS-DA was also more sensitive to the solid-state changes than X-ray powder diffraction (XRPD) and was able to detect changes in the solid-state that could not be detected with XRPD.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • phase
  • experiment
  • phase transition
  • Raman spectroscopy