People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zeman, Miro
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Stable passivation of cut edges in encapsulated n-type silicon solar cells using Nafion polymercitations
- 2022Introducing a comprehensive physics-based modelling framework for tandem and other PV systemscitations
- 2022Raman spectroscopy of silicon with nanostructured surfacecitations
- 2022Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cellscitations
- 2022Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interfacecitations
- 2021Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cellscitations
- 2021On current collection from supporting layers in perovskite/c-Si tandem solar cellscitations
- 2020Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2019High temperature oxidation pre-treatment of textured c-Si wafers passivated by a-Si:Hcitations
- 2019Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layercitations
- 2018Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cellscitations
- 2017Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cellscitations
- 2017Electron tomography analysis of 3D interfacial nanostructures appearing in annealed Si rich SiC filmscitations
- 2017New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopycitations
- 2017Design and comparison of a 10-kW interleaved boost converter for PV application using Si and SiC devicescitations
- 2016TEM analysis of multilayered nanostructures formed in the rapid thermal annealed silicon rich silicon oxide film
- 2014Study of the effect of boron doping on the solid phase crystallisation of hydrogenated amorphous silicon films
- 2014Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se-2 solar cellscitations
- 2009Structural properties of amorphous silicon prepared from hydrogen diluted silanecitations
- 2000Challenges in amorphous silicon solar cell technology
Places of action
Organizations | Location | People |
---|
article
Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cells
Abstract
<p>Highest conversion efficiency in crystalline silicon (c-Si) solar cells can be enabled by quenching minority carriers' recombination at c-Si/contact interface owing to carrier-selective passivating contacts. With the semi-insulating poly-crystalline silicon (SIPOS, poly-Si) a very good passivation of c-Si surfaces was obtained. We have explored these passivating structures on IBC solar cells and obtained over 22% efficiency with over 23% within reach on the short term. We present in detail the passivation quality of p-type and n-type ion-implanted LPCVD poly-crystalline silicon (poly-Si) and its relation to the doping profile. Optimized poly-Si layers in the role of emitter and BSF showed excellent passivation (J<sub>0,emitter</sub> = 11.5 fA/cm<sup>2</sup> and J<sub>0,BSF</sub> = 4.5 fA/cm<sup>2</sup>) and have been deployed in FSF-based IBC c-Si solar cells using a simple self-aligned patterning process. Applying an optimized passivation of FSF by PECVD a-Si:H/SiNx layer (J<sub>0,FSF</sub> = 6.5 fA/cm<sup>2</sup>) leads to a cell with efficiency of 22.1% (V<sub>OC</sub> = 709 mV, J<sub>SC</sub> = 40.7 mA/cm<sup>2</sup>, FF = 76.6%). Since over 83% FF has been reached with adjusted metallization technology on similar IBC structures, we believe 23% efficiency is within reach on the short term. Further improvement, especially at J<sub>SC</sub> level, is expected by deploying less absorbing carrier-selective passivating contacts based on poly-Si or wide bandgap poly-SiO<sub>x</sub> layers (J<sub>0</sub> ~ 10 fA/cm<sup>2</sup>).</p>