People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bladt, Eva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Diphenyl ditelluride assisted synthesis of noble metal-based silver-telluride 2D organometallic nanofibers with enhanced aggregation-induced emission (AIE) after oleylamine treatment
- 2023State of the Art and Prospects for Halide Perovskite Nanocrystals.
- 2022Element specific atom counting at the atomic scale by combining high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopycitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defectscitations
- 2020Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystalscitations
- 2018Chemical Cutting of Perovskite Nanowires into Single‐Photon Emissive Low‐Aspect‐Ratio CsPbX3 (X=Cl, Br, I) Nanorodscitations
- 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystalscitations
- 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals
- 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystals
- 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystalscitations
- 2017From Precursor Powders to CsPbX3 Perovskite Nanowires: One‐Pot Synthesis, Growth Mechanism, and Oriented Self‐Assemblycitations
- 2017Von Vorläuferpulvern zu CsPbX3‐Perowskit‐Nanodrähten: Eintopfreaktion, Wachstumsmechanismus und gerichtete Selbstassemblierungcitations
Places of action
Organizations | Location | People |
---|
article
Diphenyl ditelluride assisted synthesis of noble metal-based silver-telluride 2D organometallic nanofibers with enhanced aggregation-induced emission (AIE) after oleylamine treatment
Abstract
Silver-Telluride 2D organometallic nanofibers (NFs), using diphenyl ditelluride (DPDT) as a precursor, were synthesized. The synthesis was carried out by reacting DPDT with AgNO3 in acetonitrile at room temperature (RT) under an inert atmosphere. The resulting material was fully characterized using various techniques, including UV-VIS-NIR spectroscopy, steady-state and excited-state fluorescence spectroscopy, IR-FTIR-ATR spectroscopy, HR-ESI MS spectrometry, high-resolution transmission electron microscopy (HRTEM), BF-STEM or HAADF-STEM, confocal fluorescence microscopy images and conductivity measurements. Initially, the nanofibers were almost non-emissive. However, a remarkable modification was observed after treating the nanofibers with oleylamine under ultrasound treatment. This methodology induced an aggregation emission effect (AIE) in the solution and in the solid state, resulting in the formation of a highly red emissive fluorescent nanomaterial. This research provides valuable insights for developing new fluorescent materials with potential applications in various optical fields.