Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kushvaha, V.

  • Google
  • 2
  • 3
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites23citations
  • 2022Experimental data-driven uncertainty quantification for the dynamic fracture toughness of particulate polymer composites15citations

Places of action

Chart of shared publication
Gupta, S.
1 / 15 shared
Mukhopadhyay, Tanmoy
2 / 43 shared
Sharma, A.
1 / 38 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gupta, S.
  • Mukhopadhyay, Tanmoy
  • Sharma, A.
OrganizationsLocationPeople

article

Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites

  • Kushvaha, V.
  • Gupta, S.
  • Mukhopadhyay, Tanmoy
Abstract

The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships. Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties. However, the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches. In order to avoid the complex, cumbersome, and labor-intensive experimental and numerical modeling approaches, a machine learning (ML) model is proposed here such that it takes the microstructural image as input with a different range of Young's modulus of carbon fibers and neat epoxy, and obtains output as visualization of the stress component S 11 (principal stress in the x-direction). For obtaining the training data of the ML model, a short carbon fiber-filled specimen under quasi-static tension is modeled based on 2D Representative Area Element (RAE) using finite element analysis. The composite is inclusive of short carbon fibers with an aspect ratio of 7.5 that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition (SSI) process. The study reveals that the pix2pix deep learning Convolutional Neural Network (CNN) model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young's modulus with high accuracy. The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum, indicating excellent prediction capability. In this paper, we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens. The development of ...

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • laser emission spectroscopy
  • random
  • finite element analysis
  • fiber-reinforced composite
  • machine learning