People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Naparty, Mieczysław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering technique
Abstract
Nanocomposite coatings of tungsten carbide incorporated into amorphous carbon (a-C/WCx) were synthesizedwith a varying amplitude of pulse pressure oscillation (0,4–0,8 Pa) on the silicon substrates through the GasInjection Magnetron Sputtering (GIMS) technique. Hence, energy distribution manner followed by changingdensity (pressure) of plasma molecules was discussed in terms of two possibilities of a tungsten-carbon phaseformation; clusters synthesis, within plasma ionizedflux and the Lifshitz model of the surface nucleation. For thispurpose, the morphology and the surface topography of deposited layers were studied by the atomic forcemicroscopy (AFM), optical emission spectroscopy (OES) and the scanning electron microscopy (SEM). Further,pronounced structural analysis provided via transmission electron microscopy (TEM) and X-ray diffraction(XRD), presents, that spherical shaped WCxnanoclusters (1–4 nm) were dispersed in the amorphous‑carbon-likehost matrix. More detailed chemical bonding state circumstances attained, that these nanocrystallites consistprimarily of metastableγ-WC1−x, and the small amount ofβ-W2C phase; embedded within the diamond-likecarbon (DLC) structure, referring to the engaged X-ray photoelectron spectroscopy (XPS) and the Ramanspectroscopy examinations. Accordingly, an application issue of the unique bonds dependence of DLC/WCxcoatings, deposited onto high speed steel substrate (SW7M) substrate, was emphasized by means of Vickersmeasurements, as a sensing microhardness feedback.