People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kulikowski, Krzysztof
Laboratoire Bourguignon des Matériaux et Procédés
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Tribological Properties of SPS Reactive Sintered Al/MoS2 Composites
- 2023Microstructure and properties of AlCr and AlCrFe coatings deposited by magnetron sputteringcitations
- 2023Coatings deposited by physical vapor deposition (PVD) on high-speed steel used in the processing of wood materials
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2022Comparison Study of PVD Coatings: TiN/AlTiN, TiN and TiAlSiN Used in Wood Machiningcitations
- 2022Mechanical Behavior of Nitrocarburised Austenitic Steel Coated with N-DLC by Means of DC and Pulsed Glow Dischargecitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processescitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditionscitations
- 2020CORROSION RESISTANCE OF NITROGEN-DOPED DLC COATINGS PRODUCED IN GLOW DISCHARGE CONDITIONS ON NITRIDED AUSTENITIC STEELcitations
- 2019Structure and properties of composite aluminum oxide layers produced on magnesium alloys using hybrid methodcitations
- 2017Structure and properties of composite layers of nitrided layers with surface zone of manganese phosphate type produced on 32CDV13 steel
- 2017Influence of amorphous carbon layers on tribological properties of polyetheretherketone composite in contactwith nitrided layer produced on Ti6Al4V titanium alloycitations
- 2017Structure and adhesion of nickel-phosphorus coatings plated on the nitrided 1.2343 (WCL) steel
- 2015Surface Modification of Austenitic Steel by Various Glow-Discharge Nitriding Methodscitations
- 2015Evaluation of the Quality of Coatings Deposited on AZ31 Magnesium Alloy Using the Anodising Method / Ocena Jakości Powłok Wykonanych Na Stopie Magnezu Az31 Metodą Anodowaniacitations
Places of action
Organizations | Location | People |
---|
document
Influence of amorphous carbon layers on tribological properties of polyetheretherketone composite in contactwith nitrided layer produced on Ti6Al4V titanium alloy
Abstract
The key issue in bone implants biomechanics is – besides using biocompatible materials - the optimization of tribological properties of friction pairs occurring in joint implants e.g. knee and hip endoprothesis. Increasingly important role in these systems, alongside ceramics-on-ceramics and metal-on-metal, have metal-on-polymer friction pairs. Commonly used in orthopedicsultra high molecular weight polyethylene (UHMWPE) does not meet the requirements of modern bone implants, mainly because of its harmful wear products which can cause inflammation and osteolysis of surrounding tissues after several years of using the endoprosthesis. Therefore, other polymer materials have been developed to replace UHMWPE, as well as several surface engineering methods are used for enhancing biocompatibility and tribological properties of applied materials. One of the materials to replace UHMWPE is increasingly used in medicine polyetheretherketone (PEEK) – a polymer material with a high biological indifference and mechanical properties.The article presents characteristics of TiN+Ti2N+αTi(N) nitrided layer produced on Ti6Al4V titanium alloy using glow discharge assisted nitriding process at the plasma potential, also known as the active screen plasma nitriding process and hydrogenated amorphous carbon doped with nitrogen layer a-C:N:H produced via RFCVD process on PEEK-based composite consisting of 10% graphite, 10% carbon fibers and 10% PTFE. Tribological properties ofa-C:N:H – TiN+Ti2N+αTi(N) friction pair using “ball-on-disc” and “block-on-roll” tests were examined in correlation with microstructure (TEM, SEM, Raman spectroscopy) and surface morphology and topography (SEM, AFM, optical profilometer).The goal of this work is to present a new possibility of material solution for a ‘head-acetabulum’ friction pair in hip joint endoprosthesis using PEEK (PEEK T) as a replacement for commonly used UHMWPE and nitrided layer produced on Ti6Al4V titanium alloy using active screen plasma nitriding process.Amorphous carbon layer, 200 nm thick, produced on PEEK composite significantly improved tribological properties of PEEK composite – TiN (nanocrystalline)+Ti2N+αTi(N)layer friction pair, decreasing the friction coefficient by 2 times and minimizing wear of both used materials in the point contact (“ball-on-disc” method) and in surface contact (“block-on-roll” method).