People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hélix-Nielsen, Claus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Facile Fabrication of Flexible Ceramic Nanofibrous Membranes for Enzyme Immobilization and Transformation of Emerging Pollutantscitations
- 2023Facile Fabrication of Flexible Ceramic Nanofibrous Membranes for Enzyme Immobilization and Transformation of Emerging Pollutantscitations
- 2023Synthesis of magnetic nanoparticles with covalently bonded polyacrylic acid for use as forward osmosis draw agentscitations
- 2022Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solutioncitations
- 2021Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranescitations
- 2021Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applicationscitations
- 2021Impact of sodium hypochlorite on rejection of non-steroidal anti-inflammatory drugs by biomimetic forward osmosis membranescitations
- 2019Synthesis of Poly-Sodium-Acrylate (PSA)-Coated Magnetic Nanoparticles for Use in Forward Osmosis Draw Solutionscitations
- 2016Influence of feed composition and membrane fouling on forward osmosis performance
- 2015A reusable device for electrochemical applications of hydrogel supported black lipid membranescitations
- 2015A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industrycitations
- 2012Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Lightcitations
- 2011Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrayscitations
- 2011Electrochemical characterization of hydrogels for biomimetic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranes
Abstract
<p>In this study, novel thin-film nanocomposite (TFN) membranes were developed by incorporating graphene oxide (GO) and Aquaporin Z (AqpZ) reconstituting nanostructure (AQN) into the polyamide (PA) active layer to improve the forward osmosis (FO) performances of the PA TFN membranes. First, the AQN loading in the PA layer was optimized, followed by the GO addition in PA layer at various loadings until the optimal FO process performance was attained. Experimental results showed that GO flakes increased membrane water flux but decreased selectivity by creating non-selective voids in PA layer. Whereas, AQN increased membrane selectivity by healing the non-selective PA defects created by the GO flakes. The synergistic effect of GO-AQN improved the water flux without deteriorating the selectivity of the membrane. The TFN membrane with 0.2 wt% AQN and 0.005 wt% GO loading (TFN50) showed almost 3 folds increase in water flux (24.1 L·m<sup>−2</sup>·h<sup>−1</sup>) in comparison to the TFC membrane (8.2 L·m<sup>−2</sup>·h<sup>−1</sup>), while retaining the membrane selectivity (0.37 g.L<sup>−1</sup>). Interestingly, the TFN50 membrane demonstrated a 27% lower specific reverse salt flux (SRSF) and a marginal increase in water flux than the TFN membrane embedded with 0.005 wt% GO and no AQN (TFNGO50). The overall experimental results confirmed that the addition of AQN into GO-based PA TFN membranes could improve the membrane selectivity by reducing the non-selective PA defects created by GO flakes. The results of this study could provide strategies to further enhance the selectivity of GO-based TFN membranes by preventing the formation of defective PA layer.</p>