People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendonça, G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study.
Abstract
<h4>Objectives</h4>This in vitro comparative study aimed to evaluate the physical and mechanical properties of four 3D-printed resins with two different thickness layers.<h4>Methods</h4>Four printed resins (VarseoSmile Crown Plus, VSC; NexDent C&B MFH, MFH; Nanolab 3D, NNL; and Resilab 3D Temp, RSL) were printed with 50 µm and 100 µm layer thickness, resulting in 80 bars measuring 25 × 2×2 mm. The specimens underwent a Raman spectroscopy for degree of conversion, confocal laser scanning microscopy for surface roughness (Sa), three-point bending test for flexural strength and elastic modulus, and a Vickers hardness test (VHN). Data was tested for normality using the Shapiro-Wilk, two-way ANOVA, and Tukey test (α = 0.05) for statistical analysis.<h4>Results</h4>The layer thickness affected all performed tests, but the elastic modulus (p < 0.001). Specimens with 100 µm showed, in general, worse results outcomes than those with 50 µm (p < 0.001). However, within the limitations of this comparative in vitro study, it could be concluded that the tested resins and layer thicknesses directly influenced physical and mechanical properties.<h4>Significance</h4>The physical and mechanical properties of three-dimensional printed restorations can be affected by the layer thickness, which can interfere with the choice of the 3D printing resin for a desired clinical outcome.