Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajan, Sheetal Maria

  • Google
  • 2
  • 10
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Synergistic Effect of High Intensity Focused Ultrasound on In-vitro Remineralization of Tooth Enamel by Calcium Phosphate Ion Clusters4citations
  • 2022Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity.28citations

Places of action

Chart of shared publication
Fawzy, Amr
2 / 23 shared
Aati, Sultan
1 / 2 shared
Yusiharni, Emielda
1 / 1 shared
Shrestha, Barsha
1 / 2 shared
Saunders, Martin
1 / 33 shared
Chauhan, A.
1 / 6 shared
Aati, H.
1 / 1 shared
Sm, Rajan
1 / 1 shared
Aati, S.
1 / 2 shared
Shrestha, B.
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Fawzy, Amr
  • Aati, Sultan
  • Yusiharni, Emielda
  • Shrestha, Barsha
  • Saunders, Martin
  • Chauhan, A.
  • Aati, H.
  • Sm, Rajan
  • Aati, S.
  • Shrestha, B.
OrganizationsLocationPeople

article

Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity.

  • Chauhan, A.
  • Aati, H.
  • Sm, Rajan
  • Aati, S.
  • Shrestha, B.
  • Fawzy, Amr
  • Rajan, Sheetal Maria
Abstract

<h4>Objectives</h4>Oral prosthetic rehabilitation has been used for a long time to restore function and natural appearance; however, it is still one of the most challenging areas in dentistry due to its technical fabrication process and biological behavior. Considering the advantages of additive manufacturing technology, this study introduced the feasibility of developing a 3D printed resin-based composition modified with graphene nanoplatelets (GNPs) to improve properties.<h4>Methods</h4>Acrylate-based resin was impregnated with different concentrations of GNPs (0.0-0.25 wt%), and then different aspects such as mechanical, physical, biological and antimicrobial were analyzed to evaluate the effectiveness. TEM and SEM were used to characterize GNPs and their existence within the resin. Surface topography and roughness were evaluated using AFM. The degree of conversion and composition were confirmed by FTIR. Mechanical properties were detected using bending strength, microhardness and nanoindentation. Biocompatibility and antimicrobial activities were assessed with oral fibroblast and Candida albicans (C. albicans), respectively. In addition, most of the measurements were performed repeatedly after 3 months of storage in artificial saliva to evaluate performance.<h4>Results</h4>GNPs improved strength significantly at low concentrations ≤ 0.05 wt%, while the addition up to 0.25 wt% enhanced printed nanocomposite hardness and elasticity. The modification did not induce a toxic response, as its biocompatibility was within the recommended range of biomedical devices. Antimicrobial activity was of prominence, as GNPs showed an outstanding route of reducing C. albicans activity associated with filler proportion.<h4>Significance</h4>The embedment of GNPs in 3D printed resin can become a key material for customized applications that require high antimicrobial, stiffness and strength properties.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • strength
  • hardness
  • nanoindentation
  • transmission electron microscopy
  • elasticity
  • resin
  • additive manufacturing
  • biocompatibility