Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saraceni, Cintia Helena Coury

  • Google
  • 1
  • 7
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Bis(4-methyl phenyl)iodonium as an alternative component to diphenyliodonium in camphorquinone-based ternary initiating systems14citations

Places of action

Chart of shared publication
Gonçalves, Luciano Souza
1 / 2 shared
Hadis, Mohammed
1 / 3 shared
Lima, Adriano Fonseca
1 / 3 shared
Verzola, Karina C.
1 / 2 shared
Palin, William M.
1 / 8 shared
Watts, Dc.
1 / 116 shared
Dressano, Diogo
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gonçalves, Luciano Souza
  • Hadis, Mohammed
  • Lima, Adriano Fonseca
  • Verzola, Karina C.
  • Palin, William M.
  • Watts, Dc.
  • Dressano, Diogo
OrganizationsLocationPeople

article

Bis(4-methyl phenyl)iodonium as an alternative component to diphenyliodonium in camphorquinone-based ternary initiating systems

  • Gonçalves, Luciano Souza
  • Saraceni, Cintia Helena Coury
  • Hadis, Mohammed
  • Lima, Adriano Fonseca
  • Verzola, Karina C.
  • Palin, William M.
  • Watts, Dc.
  • Dressano, Diogo
Abstract

<p>Objective: To evaluate the influence of different co-initiators (diphenyliodonium hexafluorophosphate - DPI - and bis(4-methyl phenyl)iodonium hexafluorophosphate – BPI) on chemical and mechanical properties of resins. Methods: Nine experimental resins (50% Bis-GMA and 50% TEGDMA, w/w) with 60 wt% filler particles were formulated. The initiating system used was camphorquinone (CQ-1 mol%) and ethyl dimethylaminobenzoate (EDAB-2 mol%). Experimental groups were established according to DPI and BPI quantities (0.25, 0.5, 0.75, and 1 mol%). The control group was a resin containing only CQ-EDAB. Light transmission through the resin during polymerisation was analysed with a UV–vis spectrophotometer. Real-time polymerisation of the systems was evaluated using an FTIR spectrometer. Real-time polymerisation shrinkage strain was evaluated, and the flexural strength and modulus of materials were obtained by 3-point bending. Experimental groups were statistically analysed by Analysis of Variance and Tukey's test (α = 0.05). Dunnett's test was applied to compare experimental groups with control. Results: Light transmission rapidly increased initially for resins containing DPI or BPI. After 30 s cure, the irradiance on the lower surface of resin specimens was similar for all groups. After 10 s of light irradiation, groups containing DPI and BPI had higher conversion than the control. However, conversion after 120 s post-irradiation was similar for all groups. The rate of polymerisation, shrinkage strain, and the maximum strain rate were higher for groups containing DPI/BPI. The use of iodonium salts increased the flexural strength and flexural moduli of resins. Significance: DPI and BPI increased resin reactivity similarly. Increased rate of polymerization influenced light transmission through the resin in the first seconds of polymerisation and increased resin shrinkage and rate of shrinkage, as well as flexural strength and moduli.</p>

Topics
  • surface
  • strength
  • flexural strength
  • resin