People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roohpour, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Hydration dependent mechanical performance of denture adhesive hydrogelscitations
- 2016Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applicationscitations
- 2009Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical propertiescitations
- 2009Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC)citations
- 2009Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applicationscitations
- 2009Synthesis and characterisation of enhanced barrier polyurethane for encapsulation of implantable medical devicescitations
- 2009Isopropyl myristate-modified polyether-urethane coatings as protective barriers for implantable medical devicescitations
- 2008Polymeric barrier membranes for device packaging, diffusive control and biocompatibilitycitations
- 2008Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC)citations
- 2008Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cementscitations
Places of action
Organizations | Location | People |
---|
article
Hydration dependent mechanical performance of denture adhesive hydrogels
Abstract
© 2018 The Academy of Dental Materials Objective: Hydration in denture adhesives regulates the formation of complex morphologies and mechanical function. Multiscale experimental approaches are required to evaluate the impact of hydration on the inherent heterogeneity of denture adhesive-based hydrogels at different length scales and the impact of such phenomena on adhesion performance. Methods: The morphology of hydrated denture adhesives was examined via cryo-scanning electron microscopy (cryo-SEM). The rheological and thermodynamic behaviour of bulk hydrated deture adhesives was examined by rheology and differential scanning Calorimetry (DSC). The microscopic mechanical properties of the denture adhesives were characterised by atomic force microscopy (AFM) and compared to the properties measured at the macroscopic scale. Results: The rheological and mechanical properties of commerically available denture adhesive hydrogels were found to be critically dependent on both the formulation of the adhesives and their hydration level. Clear progression of phase separation was observed in hydrated denture adhesives as hydration increased and changed the mechanical properties of the adhesives at multiple length scales. The adhesives displaying more heterogeneous structures, which were associated with the presence of hydrophobic and organic compounds in the formulation, exhibited more variable mechanical behaviour and weaker rheological properties, but stronger adhesive properties. Significance: Our results are important in defining the relationships between hydrophilicity, hydration, mechanical and adhesive properties of denture adhesives, allowing the development of improved chemical formulations that control the fixation of dentures.