People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zinelis, Spiros
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Silane reactivity and resin bond strength to lithium disilicate ceramic surfacescitations
- 2019A comparison of the compositional, microstructural, and mechanical characteristics of Ni-Free and conventional stainless steel orthodontic wirescitations
- 2019Surface, microstructural, and mechanical characterization of prefabricated pediatric zirconia crownscitations
- 2018Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applicationscitations
- 2018Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applicationscitations
- 2016Elemental, Morphological, and Corrosion Characterization of Different Surface States of Co-Cr Alloy for Prosthodontic Applications
- 2015Mechanical properties of orthodontic wires derived by instrumented indentation testing (IIT) according to ISO 14577
- 2014Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM)citations
- 2014Micro-Raman spectroscopic analysis of TiO2 phases on the root surfaces of commercial dental implantscitations
- 2005Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materialscitations
- 2004Titanium orthodontic brackets: Structure, composition, hardness and ionic releasecitations
Places of action
Organizations | Location | People |
---|
article
Multitechnique characterization of conventional and experimental Ag-based brazing alloys for orthodontic applications
Abstract
Objectives<br/><br/>To characterize the microstructure, mechanical properties, ionic release and tarnish resistance of conventional and experimental Ag-based soldering alloys for orthodontic applications.<br/><br/>Methods<br/><br/>Disk shaped specimens were prepared from four commercial Ag based soldering alloys [Dentaurum Universal Silver Solder (DEN), Orthodontic Solders (LEO), Ortho Dental Universal Solder (NOB), and Silver Solder (ORT)] and four experimental alloys Ag12Ga, Ag10Ga5Sn, Ag20In and Ag7Sn. The elemental composition and microstructure was determined by SEM/EDX and XRD analysis, while the mechanical properties were determined by Instrumented Indentation Testing. Ionic release of Ag, Cu, Zn, Ga, In and Sn was determined by ICP-EAS in 0.9% NaCl and Ringer’s solutions after 28, 49 and 70 days. Tarnish resistance was also tested and colorimetry was applied to quantify the differences in color (DE) before and after immersion in testing media. DSC was used to determine the melting range of the experimental alloys. Mechanical properties, ionic release and DE were statistically compared by ANOVA and Holm-Sidak multiple comparison test (a = 0.05).<br/><br/>Results<br/><br/>All commercially alloys belong to the Ag–Zn–Cu ternary system and consist a Ag rich face centered cubic (FCC) and Cu (FCC) phase. The former is the predominant phase also in experimental alloys. Conventional alloys demonstrated higherhardness, less ductility and lower melting rangers compared to experimental alloys. Immersion testing revealed the release of Cu and Zn ions from the commercially alloys and Ga ions from AgGa and AgGaSn while no ionic release was identified for AgIn and AgSn. All alloys failed tarnish testing according to ISO 10271 showing DE values much higher than the clinical acceptable limit (3.7).<br/><br/>Significance<br/><br/>The conventional Ag based soldering alloys showed substantial differences in their microstructure, mechanical properties and ionic release, and thus different clinical performance is anticipated. Ga, Sn and In might be employed as alloying addition to modify the properties of Ag brazing alloys.