Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cao, Xu

  • Google
  • 1
  • 2
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017The impact of resin-coating on sub-critical crack extension in a porcelain laminate veneer material13citations

Places of action

Chart of shared publication
Addison, Owen
1 / 43 shared
Fleming, Garry J. P.
1 / 17 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Addison, Owen
  • Fleming, Garry J. P.
OrganizationsLocationPeople

article

The impact of resin-coating on sub-critical crack extension in a porcelain laminate veneer material

  • Addison, Owen
  • Fleming, Garry J. P.
  • Cao, Xu
Abstract

<p>Objectives Characterisation of the interaction between crack extension, crack stabilisation and stress/strain relaxation in the polymeric matrix, the interplay between stress corrosion cracking and the mechanical response of a resin-based luting adhesive within a surface defect population could extend PLV restoration longevity by optimising cementation protocols. The aim was to investigate the influence of stress corrosion cracking and the viscoelastic behaviour of a resin-based luting adhesive independently by controlling the environmental conditions operative during test specimen fabrication. Methods The effects of stress corrosion at ceramic crack tips and potential viscoelastic responses to loading of the resin-coated impregnating cracks were isolated. Resin-coated feldspathic ceramic test specimens were fabricated in ambient humidity or following moisture exclusion. Bi-axial flexure strengths of groups (n = 20) were determined at constant loading rates of 2.5, 10, 40, 160 or 640 N/min and data was compared with uncoated controls. Fractographic analyses were performed on all fractured test specimens. Results Resin-cement coating resulted in significant ceramic strengthening in all conditions tested (p &lt; 0.01). A two-way ANOVA demonstrated that the exclusion of moisture during resin- coating significantly increased mean BFS (p&lt;0.01) but post-hoc Tukey tests identified that moisture exclusion resulted in significant increases in BFS values only at intermediate loading rates with no significant differences observed at either the fastest or slowest loading rates (640 and 2.5 N/min, respectively). Significance Mechanical reinforcement of PLV materials by resin-cement systems is yet to be optimized. The viscoelastic behavior of the resin-cement itself can influence the magnitude of reinforcement observed and sub-critical crack growth.</p>

Topics
  • impedance spectroscopy
  • surface
  • crack
  • strength
  • cement
  • ceramic
  • resin
  • stress corrosion