People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borba, Márcia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics
- 2024Influence of Different Surface Finishing Protocols on the Wear Behavior of Lithium Disilicate Glass-Ceramics
- 2023Influence of piston material on the fatigue behavior of a glass-ceramiccitations
- 2023Fatigue resistance of polymeric restorative materials: effect of supporting substrate
- 2023Optimization of Lithium Disilicate Glass-Ceramic Crowns: Finish Line, Scanning, and Processing Methodscitations
- 2020Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentincitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Fatigue Behavior of Crystalline-Reinforced Glass-Ceramicscitations
- 2018Effect of screw-access hole and mechanical cycling on fracture load of 3-unit implant-supported fixed dental prosthesescitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2017Influence of surface finishing on fracture load and failure mode of glass ceramic crownscitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2014Effect of the infrastructure material on the failure behavior of prosthetic crownscitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
Places of action
Organizations | Location | People |
---|
article
Effect of different aging methods on the mechanical behavior of multi-layered ceramic structures
Abstract
<p>Objective: To evaluate the effect of two aging methods (mechanical cycling and autoclave) on the mechanical behavior of veneer and framework ceramic specimens with different configurations (monolithic, two and three-layers). </p><p>Methods: Three ceramics used as framework for fixed dental prostheses (YZ—Vita In-Ceram YZ; IZ—Vita In-Ceram Zirconia; AL—Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs: monolithic, two layers (porcelain–framework) and three layers (porcelain–framework–porcelain). Specimens were tested for three-point flexural strength at 1 MPa/s in 37 °C artificial saliva. Three different experimental conditions were evaluated (n = 10): control; mechanical cycling (2 Hz, 37 °C artificial saliva); and autoclave aging (134 °C, 2 bars, 5 h). Bi-layered specimens were tested in both conditions: with porcelain or framework ceramic under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy. Results were statistically analyzed using Kruskal–Wallis and Student-Newman–Keuls tests. </p><p>Results: Only for AL group, mechanical cycling and autoclave aging significantly decreased the flexural strength values in comparison to the control (p < 0.01). YZ, AL, VM7 and VM9 monolithic groups showed no strength degradation. For multi-layered specimens, when the porcelain layer was tested in tension (bi and tri-layers), the aging methods evaluated also had no effect on strength (p ≥ 0.05). Total and partial failure modes were identified. </p><p>Significance: Mechanical cycling and autoclave aging protocols had no effect on the flexural strength values and failure behavior of YZ and IZ ceramic structures. Yet, AL monolithic structures showed a significant decrease in flexural strength with any of the aging methods.</p>